K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Trong ∆ ABC ta có: DE // AC (gt)

Suy ra: \(\frac{AE}{AB}=\frac{CD}{CB}\)(định lí Ta-lét) (1)

Lại có: DF // AB (gt)

Suy ra: \(\frac{AF}{AC}=\frac{BD}{BC}\)(định lí Ta-lét) (2)

Cộng trừ vế (1) và (2), ta có:

\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{BC}{BC}=1\)

3 tháng 3 2020

A B C D E F

Thấy đề sai sai á :)) Hóng cách làm  vậy ....

22 tháng 2 2024

Để chứng minh rằng MN=PQ, ta sẽ sử dụng tính chất của các tam giác đồng dạng.

Gọi X là giao điểm của MQNP.

Ta có các tam giác đồng dạng sau:

MQXNPX (do MQ song song với NP, XM song song với PN và góc MXQPXN là góc đồng phía nội tiếp giữa hai đoạn thẳng MQNP).XMDXCB (do MQ song song với CBMD song song với BX).XNCXAD (do NP song song với ADNC song song với XA).

Từ tính chất của các tam giác đồng dạng, ta có thể viết các tỉ số tương ứng:

(1)PNMQ​=PXQX​(1)(2)CBMD​=XBXM​(2)(3)ADNC​=AXNX​(3)

Như vậy, từ các phương trình trên, ta có thể suy ra:

(4)PNMQ​=CBMD​⋅ADNC​(4)

Vậy nên ta thấy rằng PNMQ​=CBMD​⋅ADNC​.

Từ (4), ta thấy rằng MQ=PN khi và chỉ khi MD=NC, CB=AD, tức là ABCD là hình vuông.

Do đó, ta đã chứng minh được rằng MN=PQ khi và chỉ khi ABCD là hình vuông.

mong là đúng:))hehehehehehe

    

22 tháng 4 2017

Giải:

∆ADC có OE // OC nên OEDC AEA

OEDC
OEDC
= AEAD

∆BDC có OF // DC nên OFDCOFDC = BFBCBFBC

Mà AB // CD => AEADAEAD = BFBCBFBC(câu b bài 19)

Vậy OEDCOEDC = OFDCOFDC nên OE = OF.

14 tháng 1 2018

A B D C F E

Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)

Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)

Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)

22 tháng 4 2017

a) Chứng minh AHAHAH′AH = BCBCB′C′BC

Vì B'C' // với BC => BCBCB′C′BC = ABABAB′AB (1)

Trong ∆ABH có BH' // BH => AHAHAH′AH = ABBCAB′BC (2)

Từ 1 và 2 => BCBCB′C′BC = AHAHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

BCBCB′C′BC = AHAHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313

21 tháng 2 2018

a) Chứng minh AH′AHAH′AH = B′C′BCB′C′BC

Vì B'C' // với BC => B′C′BCB′C′BC = AB′ABAB′AB (1)

Trong ∆ABH có BH' // BH => AH′AHAH′AH = AB′BCAB′BC (2)

Từ 1 và 2 => B′C′BCB′C′BC = AH′AHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

B′C′BCB′C′BC = AH′AHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313BC

=>SAB’C’= (1212AH.BC)1919

mà SABC= 1212AH.BC = 67,5 cm2

Vậy SAB’C’= 1919.67,5= 7,5 cm2