Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : x2-y2+2yz-z2=-(y2-2yz+z2-x2) Câu 2: x2-2xy+y2-xz+yz=(x2-2xy+y2)-xz+yz
=-(y-z)2 -x2 =(x-y)2-z(x-y)
=-(y-z-x)(y-z+x) =(x-y)(x-y-z)
x^4-5x^2+4=x^4-x^2-(4x^2-4) = x^2(x^2-1)-4(x^2-1)
=(x^2-4)(x^2-1)
=(x-2)(x+2)(x-1)(x+1)
\(a,x^2+7x+7y-y^2\)
\(=x^2-y^2+7\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
\(b,x^2-2x-9y^2+6y\)
\(=x^2-\left(3y\right)^2-2\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-2\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-2\right)\)
\(c,x^2-xy+x^3-3x^{2y}+3x^{2y}-y^3\)
\(=x\left(x-y\right)+\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(x+x^2+xy+y^2\right)\)
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
11, \(5\left(x-y\right)+y^2-xy=5\left(x-y\right)+y\left(y-x\right)=\left(5-y\right)\left(x-y\right)\)
12, \(14a^2b^3-35ab^2+7a^2b^2=7ab^2\left(2ab-5+a\right)\)
13, \(6a^2b^3-30ab^2+12a^2b=6ab\left(ab^2-5b+2a\right)\)
bạn kham khảo link, mình đã làm rồi nhé
Câu hỏi của Phạm Đỗ Bảo Ngọc - Toán lớp 8 - Học trực tuyến OLM
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
Ta thay : \(x=0;y=2009;z=2010\) ta được :
\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)
Chúc bạn học tốt !!!
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)
Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :
\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)
\(x^2-y^2+z^2-t^2-2xz+2yt=\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2-2yt+t^2\right)=\)
\(=\left(x-z\right)^2-\left(y-t\right)^2=\)
\(=\left[\left(x-z\right)-\left(y-t\right)\right]\left[\left(x-z\right)+\left(y-t\right)\right]\)
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2+2yt+t^2\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z+y-t\right)\times\left(x-z-y+t\right)\)