Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thế \(\hept{\begin{cases}x_1^2=2mx_1+3m\\x_2^2=2mx_2+3m\end{cases}}\) vô cái dưới là xong nha
PT có 2 nghiệm \(x_1,x_2\Leftrightarrow\) △\(\ge0\Leftrightarrow\)\(4\left(m-1\right)^2-4\left(2m^2-3m+1\right)\ge0\)\(\Leftrightarrow0\le m\le1\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m^2-3m+1\end{matrix}\right.\)
Suy ra \(P=\left|2m-2+2m^2-3m+1\right|=\left|2m^2-m-1\right|\)
Đến đây giải nốt nha
a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)
Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)
Thay vào ta được:
\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)
\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)
Vậy \(0< m\le1\)
b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)
\(x_1^3+x_2^3\le16\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)
\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)
\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)
\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)
\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))
Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)
a/ Ta có : △' = (-2)2-(m+3)
=4-m-3 = 1-m
De ptr co 2 nghiem x1 va x2 thì △' ≥0
=>1-m≥0 =>m≤1
Theo Viei{ x1+x2=4 ; x1x2=m+3
Ta co: |x1-x2|=2 ⇔(x1-x2)2=4
⇔(x1+x2)2-4x1x2=4
⇔42-4(m+3)=4
⇔m=0 (TM)
b/ Ta co: △ = (m-1)2-4(m+6)
=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0
=> m2-6m-23≥0 (*)
Theo viet { x1+x2=1-m ; x1x2=m+6
db <=> ( x1+x2)2-2x1x2=10
⇔ (1-m)2-2(m+6)=10
⇔ m2-4m -21 =0
⇔[m=7 ; m=-3
Thay vao (*) =>m=7 (loai) ; m=-3 (tm)
c/ Ta co :△' = (-m)2-(3m-2)
= m2-3m+2
De ptr co 2 nghiem x1 , x2 thi : △' ≥0
⇔m2-3m+2≥0 (*)
Theo viet { x1+x2=2m ; x1x2=3m-2
db <=> ( x1+x2)2-3x1x2=4
⇔ (2m)2-3(3m-2)=4
⇔ 4m2--9m+2 =0
⇔[m=2 ; m=\(\dfrac{1}{4}\)
Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)
d/ Ta co : △=(-3)2-4(m-2)
=17-4m
De ptr co 2 nghiem x1 , x2 thi : △ ≥0
⇔17-4m≥0
⇔m≤\(\dfrac{17}{4}\)
theo viet{ x1+x2=3 ; x1x2= m-2
⇔(x1+x2)3-3x1x2(x1+x2) =9
⇔33-3.3(m-2)=9
⇔m=4(tm)
a/ \(\Delta=\left(2m+3\right)^2-4\left(m-5\right)=4m^2+8m+4+25\)
\(=4\left(m+1\right)^2+25>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb
b/ Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=m-5\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2m+3}{m-5}\\\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_1x_2}=\frac{1}{m-5}\end{matrix}\right.\) với \(m\ne5\)
Theo định lý Viet đảo, \(\frac{1}{x_1};\frac{1}{x_2}\) là nghiệm của:
\(x^2-\frac{2m+3}{m-5}x+\frac{1}{m-5}=0\Leftrightarrow\left(m-5\right)x^2-\left(2m+3\right)x+1=0\)
Lời giải:
Để PT có hai nghiệm $x_1,x_2$ (chưa quan tâm có phân biệt hay không) thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta=(2m-1)^2-4m(m-3)\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ 8m+1\geq 0\Leftrightarrow m\geq \frac{-1}{8}\end{matrix}\right.\)
Khi đó áp dụng hệ thức Viete ta có:
\(\left\{\begin{matrix}
x_1+x_2=\frac{1-2m}{m}\\
x_1x_2=\frac{m-3}{m}\end{matrix}\right.\)
Khi đó: \(\frac{1}{x_1}+\frac{1}{x_2}=7\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=7\)
\(\Leftrightarrow \frac{1-2m}{m-3}=7\)
\(( m\neq 3)\Rightarrow 1-2m=7(m-3)\)
\(\Leftrightarrow m=\frac{22}{9}\) (thỏa mãn)
Vậy \(m=\frac{22}{9}\)
Dùng hệ thức Vi-ét nhé:
Để Pt là pt bậc 2 thì m khác 1
Xét delta rồi tìm điều kiện của m
Áp dụng hề thức Vi-et:
x1+x2=1-2m/m
x1.x2=m-3/m
1/x1+1/x2=x1+x2/x1.x2=1-2m/m-3=7
Rồi tìm m là xong
Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.
Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.
Bước 3. Đối chiếu với điều kiện và kết luận bài toán.
xem tr sách của anh
Bài 1:
PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)
Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)