K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

Bạn alibaba nguyễn giải đúng rồi nhưng mình nghĩ cách này sẽ nhanh hơn :

  Giải : 

Đặt : \(A=\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)\left(1-\frac{1}{36}\right)........\left(1-\frac{1}{1326}\right)\)

\(\Rightarrow A=\left(1-\frac{2}{6.7}\right)\left(1-\frac{2}{7.8}\right)\left(1-\frac{2}{8.9}\right).......\left(1-\frac{2}{51.52}\right)\)

\(\Rightarrow A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}.........\frac{50.53}{51.52}\)

\(\Rightarrow A=\frac{\left(5.6.7......50\right)\left(8.9.10......53\right)}{\left(6.7.8.....51\right)\left(7.8.9......52\right)}\)

\(\Rightarrow A=\frac{5}{51}.\frac{53}{7}\)

\(\Rightarrow A=\frac{265}{357}\)

Vậy : \(\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)\left(1-\frac{1}{36}\right)......\left(1-\frac{1}{1326}\right)=\frac{265}{357}\)

13 tháng 3 2017

tớ nghĩ là bằng  \(\frac{1}{1326}\)

24 tháng 3 2018

= 265/327 

2 tháng 8 2017

Ai giúp mình với, cảm ơn nhìu!

29 tháng 6 2015

\(A=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}....\frac{1325}{1326}=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}....\frac{2650}{2652}\)

\(A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}....\frac{50.53}{51.52}=\frac{\left(5.6.7...50\right).\left(8.9.10...53\right)}{\left(6.7.8...51\right).\left(7.8.9...52\right)}=\frac{5.53}{51.7}=..\)

29 tháng 6 2015

quy luat la toi ko biet

6 tháng 7 2016

\(\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{1326}\right)\)

\(=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}...\frac{1325}{1326}\)

\(=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)

\(=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)

\(=\frac{5.6.7...50}{7.8.9...52}.\frac{8.9.10...53}{6.7.8...51}\)

\(=\frac{5.6}{51.52}.\frac{52.53}{6.7}\)

\(=\frac{5.52}{51.7}=\frac{260}{357}\)

Ủng hộ mk nha ^_-

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
3 tháng 8 2017

\(\left(1-\frac{1}{21}\right)\cdot\left(1-\frac{1}{28}\right)\cdot\left(1-\frac{1}{36}\right)\cdot...\cdot\left(1-\frac{1}{1326}\right)\)

\(=\frac{20}{21}\cdot\frac{27}{28}\cdot\frac{35}{36}\cdot...\cdot\frac{1325}{1326}\)

\(=\frac{40}{42}\cdot\frac{54}{56}\cdot\frac{70}{72}\cdot...\cdot\frac{2650}{2652}\)

\(=\frac{5.8}{6.7}\cdot\frac{6.9}{7.8}\cdot\frac{7.10}{8.9}\cdot....\cdot\frac{50.53}{51.52}\)

\(=\frac{5\cdot6\cdot7\cdot.....\cdot50}{6\cdot7\cdot8\cdot....\cdot51}\cdot\frac{8\cdot9\cdot10\cdot....\cdot53}{7\cdot8\cdot9\cdot...\cdot52}=\frac{5}{51}\cdot\frac{53}{7}=\frac{265}{357}\)

15 tháng 7 2018

\(\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)\left(1-\frac{1}{36}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{1326}\right)\)

\(=\frac{20}{21}\cdot\frac{27}{28}\cdot\frac{35}{36}\cdot\cdot\cdot\cdot\cdot\frac{1325}{1326}\)

\(=\frac{40}{42}\cdot\frac{54}{56}\cdot\frac{70}{72}\cdot\cdot\cdot\cdot\cdot\cdot\frac{2650}{2652}\)

\(=\frac{5\cdot8}{6\cdot7}\cdot\frac{6\cdot9}{7\cdot8}\cdot\frac{7\cdot10}{8\cdot9}\cdot\cdot\cdot\cdot\cdot\frac{50\cdot53}{51\cdot52}\)

\(=\frac{\left(5\cdot8\right)\left(6\cdot9\right)\left(7\cdot10\right)\cdot\cdot\cdot\cdot\cdot\left(50\cdot53\right)}{\left(6\cdot7\right)\left(7\cdot8\right)\left(8\cdot9\right).....\left(51\cdot52\right)}\)

\(=\frac{\left(5\cdot6\cdot7\cdot\cdot\cdot\cdot\cdot50\right)\cdot\left(8\cdot9\cdot10\cdot\cdot\cdot\cdot\cdot53\right)}{\left(6\cdot7\cdot8\cdot\cdot\cdot\cdot\cdot51\right)\cdot\left(7\cdot8\cdot9\cdot\cdot\cdot\cdot\cdot52\right)}\)

\(=\frac{5\cdot53}{51\cdot7}=\frac{265}{357}\)

8 tháng 1 2017

\(A=xemlai\) chưa hưa hiểu Quy luật

\(B=\frac{\left(n.\left(n+2\right)+1\right)}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.5}...\frac{98.98}{97.99}\frac{99.99}{98.100}\frac{100.100}{99.101}\\\)

\(B=\frac{2.100}{1.101}=\frac{200}{101}\)

5 tháng 3 2020

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)\)

\(+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}\)\(+...+\frac{1}{20}.\frac{20.21}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)

\(=\frac{\frac{\left(21+2\right)\left[\left(21-2\right)+1\right]}{2}}{2}=115\)

17 tháng 9 2019

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{9}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{8}{9}\)

\(A=\frac{1}{9}\)

17 tháng 9 2019

\(\Rightarrow\)A= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}\frac{8}{9}\)

\(\Rightarrow\)A=\(\frac{1.2.3.4.5.6.7.8}{2.3.4.5.6.7.8.9}\)

\(\Rightarrow\)A=\(\frac{1}{9}\)

HỌC TỐT!!!