Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/3 .9/8 .16/15 ......10000/9999
2.2 .3.3.4.4.....100.100 /1.3.2.4.3.5.....99.101
( 2.3.4 ....100 ) .( 2.3.4 ....100) / ( 1.2.3.....99). (3.4.5...101 )
100*2 /101
200/101
chú thích không có trong bài nhé
các dâu hiệu nhận biết
" ..........." là dấu nhân
" / " là dâu của phân số
" * " cũng là dấu nhân nha bạn
\(A=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}....\frac{1325}{1326}=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}....\frac{2650}{2652}\)
\(A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}....\frac{50.53}{51.52}=\frac{\left(5.6.7...50\right).\left(8.9.10...53\right)}{\left(6.7.8...51\right).\left(7.8.9...52\right)}=\frac{5.53}{51.7}=..\)
\(\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{1326}\right)\)
\(=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}...\frac{1325}{1326}\)
\(=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)
\(=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)
\(=\frac{5.6.7...50}{7.8.9...52}.\frac{8.9.10...53}{6.7.8...51}\)
\(=\frac{5.6}{51.52}.\frac{52.53}{6.7}\)
\(=\frac{5.52}{51.7}=\frac{260}{357}\)
Ủng hộ mk nha ^_-
\(S=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2016.2018}\right)\)
\(\Rightarrow S=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2016.2018+1}{2016.2018}\)
\(\Rightarrow S=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{2017^2}{2016.2018}\)
\(\Rightarrow S=\frac{\left(2.3.4.....2017\right)\left(2.3.4.....2017\right)}{\left(1.2.3.....2016\right)\left(3.4.5.....2018\right)}\)
\(\Rightarrow S=\frac{2017.2}{1.2018}=\frac{4034}{2018}=\frac{2017}{1009}\)
2A=\(\left(1+\frac{1}{3}\right)\)\(\left(1+\frac{1}{8}\right)\)\(\left(1+\frac{1}{15}\right)\)\(.......\)\(\left(1+\frac{1}{4064255}\right)\)
2A = \(\frac{4}{3}\)\(.\)\(\frac{9}{8}\)\(.\)\(\frac{16}{15}\)\(......\)\(\frac{4064256}{4064255}\)
2A = \(\frac{2.2}{1.3}\)\(.\)\(\frac{3.3}{2.4}\)\(.\)\(\frac{4.4}{3.5}\)\(......\)\(\frac{2016.2016}{2015.2017}\)
2A = \(\frac{2.3.4....2016}{1.2.3.....2015}\)\(.\)\(\frac{2.3.4....2016}{3.4.5....2017}\)
2A = \(\frac{2016}{1}\)\(.\)\(\frac{2}{2017}\)
2A = \(\frac{4032}{2017}\)
A = \(\frac{4032}{2017}\)\(:2\)
A = \(\frac{2016}{2017}\)
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{20.22}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{20.22+1}{20.22}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{21^2}{20.22}\)
\(=\frac{\left(2.3.4.....21\right)\left(2.3.4.....21\right)}{\left(1.2.3.....20\right)\left(3.4.5.....22\right)}\)
\(=\frac{21.2}{22}=\frac{42}{22}=\frac{21}{11}\)
\(A=xemlai\) chưa hưa hiểu Quy luật
\(B=\frac{\left(n.\left(n+2\right)+1\right)}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.5}...\frac{98.98}{97.99}\frac{99.99}{98.100}\frac{100.100}{99.101}\\\)
\(B=\frac{2.100}{1.101}=\frac{200}{101}\)