Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
em có máy tính FX-570VNPLUS ko?
có thì ấn SHIFT rồi SLOVE cuối cùng nhấn = sẽ có ngay kết quả!
\(\frac{3}{4}\div y+\frac{1}{2}\div\frac{1}{4}=4\)
\(\frac{3}{4}\div y+\frac{1}{4}=4\)
\(\frac{3}{4}\div y=4-\frac{1}{4}\)
\(\frac{3}{4}\div y=\frac{15}{4}\)
\(y=\frac{3}{4}\div\frac{15}{4}=\frac{1}{5}\)
Lời giải :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
ko chép lại đề :
= \(\frac{1}{1}\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ......... + \(\frac{1}{98}\)- \(\frac{1}{99}\)+ \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
A=1999/2000
B=199/200
C=511/512
hok tốt
Đáp án
mình lười trình bày cách làm lém, để đáp án thui nha
A = \(\frac{1999}{2000}\)
B = \(\frac{199}{200}\)
C = \(\frac{511}{512}\)
làm :
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{3}{8}\)
b, \(ab\cdot10-ab=2ab\)
\(ab\cdot10-ab\cdot1=2ab\)
\(ab\cdot\left(10-1\right)=2ab\)
\(ab\cdot9=2ab\)
\(ab\cdot9=200+ab\cdot1\)
\(ab\cdot9-ab\cdot1=200\)
\(ab\cdot\left(9-1\right)=200\)
\(ab\cdot8=200\)
\(ab=200:8\)
\(ab=25\)