Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left(x-2013\right)^{2014}=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2013=1\\x-2013=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2014\\x=2012\end{cases}}}\)
Vậy x=2014; x=2012
Bài 2:
a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Ta thấy 8<9 => \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)
b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
Ta thấy \(3^{2009}< 3^{2010}\Rightarrow3^{2009}< 9^{1005}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Thấy \(9801< 9999\Rightarrow9801^{10}< 9999^{10}\Rightarrow99^2< 9999^{10}\)
B1: (x-2013)2014=1 =>x-2013=1;-1=>x=2014;2012 B2: a)có:2333=(23)111=8111 ; 3222=(32)111=9111 =>2333<3222(8111<9111) b)có:91005=(32)1005=32010 >32009 =>91005>32009 c)có:9920=(992)10=980110<999910 =>9920<999910
\(\frac{13^5+13^4-13^3}{26^3}\)
\(=\frac{13^3\times(13^2+13-1)}{(2\times13)^3}\)
\(=\frac{13^3\times181}{2^3\times13^3}\)
\(=\frac{181}{8}\)
Từ ac = b2 (1) => abc = b3
ab = c2 => abc = c3
=> b3 = c3 => b = c thay vào (1)
=> ab = b2 <=> (a - b).b = 0 <=> \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)
=> a = b = c
Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)
đặt
\(\frac{x}{5}=\frac{y}{4}=k=>x=5k,y=4k\)
\(=>x^2.y=25k^2.4k=100\)
\(k^3=1=>k=1\)
\(=>x=5,y=4\)
Vậy x=5, y=4
Bài 1: HS tự làm
Bài 2:
\(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow a=c\left(a,b,c\ne0\right)^{\left(1\right)}\)
\(ab=c^2\Rightarrow\frac{a}{c}=\frac{c}{b}\Rightarrow a=b\left(a,b,c\ne0\right)^{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow a=b=c\)
\(\Rightarrow\frac{b^{3333}}{a^{1111}c^{2222}}=\frac{b^{3333}}{a^{1111+2222}}=\frac{b^{3333}}{a^{3333}}=1\)
Bạn tham khảo nhé
a ) Ta có :
\(\left(-\frac{1}{5}\right)^{300}=\left(\frac{1}{5}\right)^{300}=\frac{1}{5^{300}}=\frac{1}{\left(5^3\right)^{100}}=\frac{1}{125^{100}}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(\frac{1}{3}\right)^{500}=\frac{1}{3^{500}}=\frac{1}{\left(3^5\right)^{100}}=\frac{1}{243^{100}}\)
Do \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\left(125^{100}< 243^{100}\right)\)
\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
b )
Ta có :
\(2550^{10}=\left(50.51\right)^{10}=50^{10}.51^{10}\)
\(50^{20}=50^{10}.50^{10}\)
Do \(50^{10}.51^{10}>50^{10}.50^{10}\)
\(\Rightarrow50^{20}< 2550^{10}\)
c )
Ta có :
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(5^{50}=\left(5^2\right)^{25}=25^{25}\)
Do \(16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)
Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Do : \(8^{111}< 9^{111}\left(8< 9\right)\)
\(\Rightarrow2^{333}< 3^{222}\)
Ta có : \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
Do : \(3^{2009}< 3^{2010}\left(2009< 2010\right)\)
\(\Rightarrow3^{2009}< 9^{1005}\)