Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Do : \(8^{111}< 9^{111}\left(8< 9\right)\)
\(\Rightarrow2^{333}< 3^{222}\)
a, Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)
b, Ta có : \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
\(\Rightarrow3^{2009}< 9^{1005}\)
c, Ta có : \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì 9>8 nên 9111>8111
Vậy 3222>2333
b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
Vì 2010>2009 nên 32010>32009
Vậy 91005>32009
c)Ta có:\(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Vì 99<101 nên (99.99)10<(99.101)10
Vậy 9920<999910
a) \(2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8< 9\)\(\Rightarrow8^{111}< 9^{111}\)\(\Rightarrow2^{333}< 3^{222}\)
b) \(9^{1005}=\left(3^2\right)^{1005}=3^{2.1005}=3^{2010}>3^{2009}\)
Bài 2:
Ta có: \(\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}\)\(=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}\)\(\frac{1}{2^6}=\frac{1}{64}\)
Chúc hk tốt nha!!!
9920=(992)10=980110.Do 9801 < 9999 nên 9920<999910
535=31257;221=87. Do 3125>8 nên suy ra 221<535
BÀI4:(Mình chỉ làm bừa thôi nha...ko chắc là đúng)
(1/2)40=1/240
(1/10)12=1/1012
Ta có 240=(210)4=10244
1012=(103)4=10004
Ta thấy 10244>10004
=>240>1012
=>1/240<1/1012
=> (1/2)40<(1/10)12
Bài 1:
\(\left(x-2013\right)^{2014}=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2013=1\\x-2013=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2014\\x=2012\end{cases}}}\)
Vậy x=2014; x=2012
Bài 2:
a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Ta thấy 8<9 => \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)
b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
Ta thấy \(3^{2009}< 3^{2010}\Rightarrow3^{2009}< 9^{1005}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Thấy \(9801< 9999\Rightarrow9801^{10}< 9999^{10}\Rightarrow99^2< 9999^{10}\)
B1: (x-2013)2014=1 =>x-2013=1;-1=>x=2014;2012 B2: a)có:2333=(23)111=8111 ; 3222=(32)111=9111 =>2333<3222(8111<9111) b)có:91005=(32)1005=32010 >32009 =>91005>32009 c)có:9920=(992)10=980110<999910 =>9920<999910