K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

a. Ta có: AB < BC (5cm < 6cm)

$\widehat{ACB}$ < $\widehat{A}$ (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà $\widehat{ACB}$ = $\widehat{ABC}$ ( $\Delta ABC$ cân tại A)

$\Rightarrow \widehat{ABC}$ < $\widehat{A}$

11 tháng 5 2018

b. Xét $\Delta ADB$ và $\Delta ADC$ có:

$AB = AC$ ($\Delta ABC cân tại A$)

$\widehat{BAD} = \widehat{BAC}$ ($AD là phân giác \widehat{BAC}$)

$AD$: cạnh chung

$\Rightarrow \Delta ADB = \Delta ADC (c.g.c)$

14 tháng 4 2020

Chương II : Tam giácChương II : Tam giác

17 tháng 5 2018

Hình:

A D B C E F G 5 6

Giải:

a) Ta có: \(AC< BC\left(5< 6\right)\)

\(\Leftrightarrow\widehat{ABC}< \widehat{BAC}\) (Quan hệ giữa cạnh và góc đối diện)

b) Xét tam giác ABD và tam giác ACD, có:

AD là cạnh chung

\(\widehat{ABD}=\widehat{ACD}\) (Tam giác ABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác góc A)

\(\Rightarrow\Delta ABD=\Delta ACD\left(g.c.g\right)\)

c) Ta có tam giác ABC cân tại A có AD là phân giác

Suy ra AD đồng thời là đường trung tuyến của tam giác ABC

Mà AD cắt CE tại G

=> G là trọng tâm của tam giác ABC

=> CG là đường trung tuyến thứ ba của tam giác ABC

Măt khác CG cắt AB tại F

Nên F là trung điểm của AB

d) Không thể tính BG nếu đề bài chỉ cho dữ kiện như vậy, kết luận đề thiếu hoặc sai đề câu d, nếu đúng phải là tính AG hoặc GD.

17 tháng 5 2018

Câu d đúng đề bạn ơi. Mk chỉ ko biết làm câu d thôi, chứ mấy câu khác mk biết òi hihi

20 tháng 3 2020

A A A B B B C C C D D D E E E I I I K K K 1 2 3 4 2 1 2 1

Tia phân giác của \(\widehat{BIC}\)cắt BC ở K.\(\Delta ABC\)có \(\widehat{A}=60^0\)

Xét \(\Delta ABC\)theo định lí tổng ba góc trong một tam giác

\(\widehat{A}+\left(\widehat{B}+\widehat{C}\right)=180^0\)

=> \(60^0+\left(\widehat{B}+\widehat{C}\right)=180^0\)

=> \(\widehat{B}+\widehat{C}=120^0\)

=> \(\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)

\(\Delta BIC\)có \(\widehat{B_1}+\widehat{C_1}=60^0\)nên \(\widehat{B_1}+\widehat{C_1}+\widehat{BIC}=180^0\)

=> 600 + \(\widehat{BIC}\)= 1800

=> \(\widehat{BIC}=120^0\)

=> \(\widehat{I_1}=60^0,\widehat{I_4}=60^0\)

IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0\)

Xét \(\Delta BIE\)và \(\Delta BIK\)có :

\(\widehat{B_1}=\widehat{B_2}\)

BI cạnh chung

\(\widehat{I_1}=\widehat{I_2}=60^0\left(cmt\right)\)

=> \(\Delta BIE=\Delta BIK\left(g.c.g\right)\)

=> IE = IK(hai cạnh tương ứng)       (1)

Xét \(\Delta CID\)và \(\Delta CIK\)có :

\(\widehat{C_1}=\widehat{C_2}\)

CI cạnh chung

\(\widehat{I_3}=\widehat{I_4}=60^0\left(cmt\right)\)

=> \(\Delta CID=\Delta CIK\left(g.c.g\right)\)

=> ID = IK(hai cạnh tương ứng)    (2)

Từ (1) và (2) => ID = IE

27 tháng 3 2020

thanks

18 tháng 5 2018

a) ta có: tam giác ABC cân tại A

=> AB = AC = 5 cm ( định lí tam giác cân)

=> AC = 5 cm

=> AC < BC ( 5 cm < 6 cm)

\(\Rightarrow\widehat{ABC}< \widehat{BAC}\) ( quan hệ cạnh và góc đối diện)

b) Xét tam giác ABD và tam giác ACD

có: AB = AC (gt)

góc BAD = góc CAD (gt)

AD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)

c) Xét tam giác ABC cân tại A

có: AD là đường phân giác góc BAC (gt)

=> AD là đường trung tuyến của BC ( tính chất trong tam giác cân)

mà BE là đường trung tuyến của AC (gt)

AD cắt BE tại G (gt)

=> G là trọng tâm của tam giác ABC ( định lí trọng tâm)

=> CF là đường trung tuyến của AB ( định lí )

=> AF = BF ( định lí đường trung tuyến)

d) Xét tam giác ABC cân tại A

có: AD là đường phân giác của góc BAC (gt)

=> AD là đường cao ứng với cạnh BC ( tính chất tam giác cân)

\(\Rightarrow AD\perp BC⋮D\) ( định lí đường cao)

mà AD là đường trung tuyên của BC ( phần c)

=> BD = CD = BC/2 = 6/2 = 3 cm

=> BD = 3cm

Xét tam giác ABD vuông tại D
có: \(BD^2+AD^2=AB^2\left(py-ta-go\right)\)

thay số: \(3^2+AD^2=5^2\)

                        \(AD^2=5^2-3^2\)

                      \(AD^2=16\)

\(\Rightarrow AD=4cm\)

mà G là trọng tâm của tam giác ABC

AD là đường trung tuyến của BC

\(\Rightarrow\frac{DG}{AD}=\frac{1}{3}\Rightarrow\frac{DG}{4}=\frac{1}{3}\Rightarrow DG=\frac{4}{3}cm\)

Xét tam giác DGB vuông tại D

có: \(DG^2+BD^2=BG^2\left(py-ta-go\right)\)

thay số: \(\left(\frac{4}{3}\right)^2+3^2=BG^2\)

                                \(BG^2=\frac{97}{9}\)

                               \(\Rightarrow BG=\sqrt{\frac{97}{9}}cm\)

mk ko bít kẻ hình trên này, sorry bn nhiều nhé!

1 tháng 5 2016

bài này cx dễ mà ko khó đâu p ak

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH