Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2^333=(2^3)^111=8^111
3^222=(3^2)^111=9^111
vi 8^111<9^111
=>2^333<3^222
\(222^{333}+333^{222}\)
\(=\left(222^3\right)^{111}+\left(333^2\right)^{111}⋮\left(222^3+333^2\right)=11051937⋮13\)
=> đpcm
Hằng đẳng thức: an - 1 = (a-1).[a(n-1) + a(n-2) +...+ 1] = (a-1).p (với n nguyên dương)
an + 1 = (a+1).[a(n-1) - a(n-2) +..+ 1] = (a+1).q (với n nguyên dương lẻ)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
222333 - 1 = (222 - 1).p = 13.17.p
333222 + 1 = (333²)111 + 1 = 110889111 + 1 = (110889 + 1).q = 13.8530.q
222333 + 333222 = 222333 - 1 + 333222 + 1 = 13(17.p + 8530.q) chia hết cho 13
K NHÉ
\(2^{333}=\left(2^3\right)^{111}=8^{111}\\ 3^{222}=\left(3^2\right)^{111}=9^{111}\)
VÌ\(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)
ta có: 2333 = (23)111 = 8111
3222 =(32)111 = 9111
=> ....
TC \(2^{333}=\)\(2^{3.111}\)\(\left(2^3\right)^{111}=8^{111}\)
LC \(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
MÀ 8<9
\(\Rightarrow8^{111}< 9^{111}\)
\(hay\)\(2^{333}< 3^{222}\)
a/ \(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)
b/
\(20162016^{10}=\left(2016.10001\right)^{10}=2016^{10}10001^{10}\)
\(2016^{20}=2016^{10}.2016^{10}\)
\(10001^{10}>2016^{10}\Rightarrow2016^{10}.10001^{10}>2016^{10}.2016^{10}\Rightarrow20162016^{10}>2016^{20}\)
c/ \(\frac{222^{333}}{333^{222}}=\frac{\left(222^3\right)^{111}}{\left(333^2\right)^{111}}=\frac{\left(2^3.111^3\right)^{111}}{\left(3^2.111^2\right)^{111}}=\left(\frac{8.111}{9}\right)^{111}\)
\(\frac{888}{9}>1\Rightarrow\left(\frac{888}{9}\right)^{111}>1\Rightarrow222^{333}>333^{222}\)
a) Ta có: 3^150 = 3^2.75 = (3^2)^75 = 9^75
2^225 = 2^3.75 = (2^3)^75 = 8^75
Vì 9 > 8 nên 9^75 > 8^75
Vậy 3^150 > 2^225
b) Ta có: 2016^20 = 2016^10+10 = 2016^10 . 2016^10
20162016^10 = (10001 . 2016)^10 = 10001^10 . 2016^10
Vì 2016^10 < 10001^10 nên 2016^10 . 2016^10 < 10001^10 . 2016^10
Vậy 2016^20 < 20162016^10
Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Do : \(8^{111}< 9^{111}\left(8< 9\right)\)
\(\Rightarrow2^{333}< 3^{222}\)
\(333^{333}=3^{333}.111^{333}\)
\(555^{222}=5^{222}.111^2\)
\(3^{333}=27^{111}>5^{222}=25^{111}\) (1)
\(111^{333}>111^{222}\)(2)
Từ (1) và (2) \(\rightarrow333^{333}>555^{222}\)
2^333 = (2^3)^111 = 8^111
3^222 = (3^2)^111 = 9 ^111
Vì 8< 9 => 8^111 < 9^111 => 2^333 < 3^222
Ta có: 2^333 = (2^3)^111 = 8^111
3^222 = (3^2)^111 = 9^111
Vì 8^111 < 9^111 nên 2^333 < 3^222