K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

Sửa đề :

\(x^3+y^3+2x^2+2xy\)

\(=\left(x^3+y^3\right)+\left(2x^2+2xy\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)

24 tháng 10 2022

????

 

20 tháng 10 2021

a) \(x^3+2x^2y+xy^2-9x\)

\(=x\left(x+y\right)^2-9x\)

\(=x\left(x+y-3\right)\left(x+y+3\right)\)

b) \(2x-2y-x^2+2xy-y^2=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)

c) \(x^4-2x^2=x^2\left(x^2-2\right)\)

1 tháng 11 2021

1.a) 2x4-4x3+2x2

=2x2(x2-2x+1)

=2x2(x-1)2

b) 2x2-2xy+5x-5y

=2x(x-y)+5(x-y)

=(2x+5)(x-y)

2.

a) 4x(x-3)-x+3=0

=>4x(x-3)-(x-3)=0

=>(4x-1)(x-3)=0

=> 2 TH:

*4x-1=0            *x-3=0

=>4x=0+1        =>x=0+3

=>4x=1           =>x=3

=>x=1/4

vậy x=1/4 hoặc x=3

b) (2x-3)^2-(x+1)^2=0

=> (2x-3-x-1).(2x-3+x+1)=0

=>(x-4).(3x-2)=0

=> 2 TH

*x-4=0

=> x=0+4

=> x=4

*3x-2=0

=>3x=0-2

=>3x=-2

=>x=-2/3 

vậy x=4 hoặc x=-2/3

1 tháng 11 2021

sửa 1 chút phần cuối:

3x-2=0

=>3x=0+2

=>3x=2

=>x=2/3

vậy x=2/3 hoặc....

18 tháng 7 2015

= ( x - y)^2  - 3 ( x - y) . -10

= ( x  - y)^2 - 2.(x-y) . 3/2 +9/4 - 49/4 

= ( x - y - 3/2) ^2 - (7/2)^2 

= ( x- y - 3/2 - 7/2 )( x - y -3/2 + 7/2 )

=( x - y - 5 )( x - y + 2) 

LÀm thế này đúng không cho nhận xét

31 tháng 10 2018

trên là +3x mà sao dưới là -3x

14 tháng 7 2019

1) \(x^3+x^2+4\)

\(=\left(x^3-x^2+2x\right)+\left(2x^2-2x+4\right)\)

\(=x\left(x^2-x+2\right)+2\left(x^2-x+2\right)\)

\(=\left(x^2-x+2\right)\left(x+2\right)\)

14 tháng 7 2019

2) \(x^3-2x-4\)

\(=\left(x^3+2x^2+2x\right)-\left(2x^2+4x+4\right)\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x^2+2x+2\right)\left(x-2\right)\)

9 tháng 10 2020

2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3

= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3

= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]

= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )

= ( x - 1 )( x + 1 )

9 tháng 10 2020

Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)

\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\)

\(2x^2y^3-\frac{x}{4}-4y^6\)

đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được

\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)

\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)

28 tháng 7 2016

\(x^2+y^2-2x-2y+2xy-3\)

\(=x^2+y^2+1-2x-2y+2xy-4\)

\(=\left(x+y-1\right)^2-2^2\)

\(=\left(x+y-3\right).\left(x+y+1\right)\)