K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(A=x^2-7xy+12y^2\)

\(A=x^2-3xy-4xy+12y^2\)

\(A=x\left(x-3y\right)-4y\left(x-3y\right)\)

\(A=\left(x-4y\right)\left(x-3y\right)\)

\(B=x^2-3xy-4y^2\)

\(B=x^2+xy-4xy-4y^2\)

\(B=x\left(x+y\right)-4y\left(x+y\right)\)

\(B=\left(x-4y\right)\left(x+y\right)\)

\(A=x^2-7xy+12y^2\)

\(=x^2-3xy-4xy+12y^2\)

\(=x\left(x-3y\right)-4y\left(x-3y\right)\)

\(=\left(x-4y\right)\left(x-3y\right)\)

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

\(2x^2y^3-\frac{x}{4}-4y^6\)

đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được

\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)

\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)

19 tháng 10 2020

a) x2 - 4x + 2 = (x2 - 4x + 4) - 2 = (x - 2)2 - 2 = \(\left(x-2+\sqrt{2}\right)\left(x-2-\sqrt{2}\right)\)

b)  x2 - 12x + 11 = x2 - x - 11x + 11 = x(x - 1) - 11(x - 1) = (x - 1)(x - 11)

c) 3x2 + 6x - 9 = 3x2 - 3x + 9x - 9 = 3x(x - 1) + 9(x - 1) = (3x + 9)(x - 1) = 3(x + 3)(x - 1)

d) 2x2 - 6x + 2 = 2(x2 - 3x + 1) = 2(x2 - 3x + 9/4 - 5/4) = 2[(x - 3/2)2 - 5/4] = \(2\left(x-\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\left(x-\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\) 

19 tháng 10 2020

1. 

a) \(x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2=\left(x-2-\sqrt{2}\right)\left(x-2+\sqrt{2}\right)\)

b) \(x^2-12x+11=\left(x^2-12x+36\right)-25=\left(x-6\right)^2-5^2=\left(x-6-5\right)\left(x-6+5\right)=\left(x-11\right)\left(x-1\right)\)

c) \(3x^2+6x-9=3\left(x^2+2x-3\right)=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2-6x+2=2\left(x^2-3x+1\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]\)

\(=2\left(x-\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\)

29 tháng 7 2019

1) \(2x^2-3x-2\)

\(=2x^2-4x+x-2\)

\(=2x\left(x-2\right)+x-2\)

\(=\left(2x+1\right)\left(x-2\right)\)

29 tháng 7 2019

2) \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(3x-10\right)\left(x+1\right)\)

29 tháng 7 2019

\(x^2-xy-12y^2=0\)

\(\Leftrightarrow\left(x^2+3xy\right)-\left(4xy-12y^2\right)=0\)

\(\Leftrightarrow x\left(x+3y\right)-4y\left(x+3y\right)=0\)

\(\Leftrightarrow\left(x+3y\right)\left(x-4y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3y\\x=4y\end{cases}}\)

TH1:\(x=-3y\)

\(A=\frac{3\cdot\left(-3y\right)+2y}{3\left(-3y\right)-2y}=\frac{-9y+2y}{-9y-2y}=\frac{-7y}{-11y}=\frac{7}{11}\)

TH2:\(x=4y\)

\(A=\frac{3\cdot4y+2y}{3\cdot4y-2y}=\frac{12y+2y}{12y-2y}=\frac{14y}{10y}=\frac{7}{5}\)

8 tháng 10 2020

a) ax2 - 2bxy + 2bx2 - axy

= ( ax2 - axy ) + ( 2bx2 - 2bxy )

= ax( x - y ) + 2bx( x - y )

= ( x - y )( ax + 2bx )

= x( x - y )( a + 2b )

b) x2 + 2x - 4y2 + 8y - 3 < đã sửa >

= ( x2 + 2x + 1 ) - ( 4y2 - 8y + 4 )

= ( x + 1 )2 - ( 2y - 2 )2 

= [ ( x + 1 ) - ( 2y - 2 ) ][ ( x + 1 ) + ( 2y - 2 ) ]

= ( x + 1 - 2y + 2 )( x + 1 + 2y - 2 )

= ( x - 2y + 3 )( x + 2y - 1 )

c) x4 + 5x3 + 20x - 16

= x4 + 5x3 + 4x2 - 4x2 + 20x - 16

= ( x4 + 5x3 - 4x2 ) + ( 4x2 + 20x - 16 )

= x2( x2 + 5x - 4 ) + 4( x2 + 5x - 4 )

= ( x2 + 5x - 4 )( x2 + 4 )