K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

a) ax2 - 2bxy + 2bx2 - axy

= ( ax2 - axy ) + ( 2bx2 - 2bxy )

= ax( x - y ) + 2bx( x - y )

= ( x - y )( ax + 2bx )

= x( x - y )( a + 2b )

b) x2 + 2x - 4y2 + 8y - 3 < đã sửa >

= ( x2 + 2x + 1 ) - ( 4y2 - 8y + 4 )

= ( x + 1 )2 - ( 2y - 2 )2 

= [ ( x + 1 ) - ( 2y - 2 ) ][ ( x + 1 ) + ( 2y - 2 ) ]

= ( x + 1 - 2y + 2 )( x + 1 + 2y - 2 )

= ( x - 2y + 3 )( x + 2y - 1 )

c) x4 + 5x3 + 20x - 16

= x4 + 5x3 + 4x2 - 4x2 + 20x - 16

= ( x4 + 5x3 - 4x2 ) + ( 4x2 + 20x - 16 )

= x2( x2 + 5x - 4 ) + 4( x2 + 5x - 4 )

= ( x2 + 5x - 4 )( x2 + 4 )

8 tháng 10 2020

a) \(\left(x+2\right)^2+2\left(x^2-4\right)+\left(x-2\right)^2\)

\(=\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

\(=\left(x+2\right)\left(x+2+x-2\right)+\left(x-2\right)\left(x+2+x-2\right)\)

\(=2x\left(x+2\right)+2x\left(x-2\right)\)

\(=2x\left(x+2+x-2\right)\)

\(=2x\cdot2x=4x^2\)

b) \(2x^2-2xy-4y^2\)

\(=\left(2x^2-4xy\right)+\left(2xy-4y^2\right)\)

\(=2x\left(x-2y\right)+2y\left(x-2y\right)\)

\(=\left(2x+2y\right)\left(x-2y\right)\)

\(=2\left(x+y\right)\left(x-2y\right)\)

8 tháng 10 2020

c) \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

d) \(4x\left(x-2y\right)-8y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(4x-8y\right)\)

\(=4\left(x-2y\right)\left(x-2y\right)\)

\(=4\left(x-2y\right)^2\)

\(2x^2y^3-\frac{x}{4}-4y^6\)

đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được

\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)

\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)

18 tháng 8 2020

a)

\(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

b)

\(=a\left(a-b\right)+a-b\)

\(=\left(a+1\right)\left(a-b\right)\)

c)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left(x+1-y\right)\left(x+1+y\right)\)

d)

\(=x^3\left(x-2\right)+10x\left(x-2\right)\)

\(=x\left(x^2+10\right)\left(x-2\right)\)

e)

\(=x\left(x^2+2x+1\right)\)

\(=x\left(x+1\right)^2\)

f)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right)\left(x+y\right)\)

18 tháng 8 2020

a,2x3+3x2+2x+3

=(2x3+2x)+(3x2+3)

=2x(x2+1)+3(x2+1)

=(x2+1)(2x+3)

b,a2-ab+a-b

=(a2-ab)+(a-b)

=a(a-b)+(a-b)

=(a-b)(a+1)

c,2x2+4x+2-2y2

=2(x2+2x+1-y2)

=2[(x2+2x+1)-y2 ]

=2[(x+1)2-y2 ]

=2(x+1-y)(x+1+y)

d,x4-2x3+10x2-20x

=(x4-2x3)+(10x2-20x)

=x3(x-2)+10x(x-2)

=(x-2)(x3+10x)

=(x-2)[x(x2+10)]

e,x3+2x2+x

=x(x2+2x+1)

=x(x+1)2

f,xy+y2-x-y

=(xy+y2)-(x-y)

=y(x+y)-(x+y)

=(x+y)(y-1)

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

18 tháng 10 2018

16x4y2-25a2b2

16 tháng 10 2019

1) \(x^6+1\)

\(=x^6+x^4-x^4+x^2-x^2+1\)

\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)

\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

2) \(x^6-y^6\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

2 tháng 7 2018

a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)

\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)

\(=\left(y^2+z\right)\left(x^2+y\right)\)

b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x^2-1\right)\left(x+2y\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)

29 tháng 7 2019

\(A=x^2-7xy+12y^2\)

\(A=x^2-3xy-4xy+12y^2\)

\(A=x\left(x-3y\right)-4y\left(x-3y\right)\)

\(A=\left(x-4y\right)\left(x-3y\right)\)

\(B=x^2-3xy-4y^2\)

\(B=x^2+xy-4xy-4y^2\)

\(B=x\left(x+y\right)-4y\left(x+y\right)\)

\(B=\left(x-4y\right)\left(x+y\right)\)

\(A=x^2-7xy+12y^2\)

\(=x^2-3xy-4xy+12y^2\)

\(=x\left(x-3y\right)-4y\left(x-3y\right)\)

\(=\left(x-4y\right)\left(x-3y\right)\)

1 tháng 7 2018

\(a)\) \(x^2-2x-4y^2-4y\)

\(=\)\(\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)

\(=\)\(\left(x-1\right)^2-\left(2y+1\right)^2\)

\(=\)\(\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)

\(=\)\(\left(x-2y-2\right)\left(x+2y\right)\)

\(=\)\(2\left(x-y\right)\left(x+2y\right)\)

Chúc bạn học tốt ~ 

a) Ta có x- 2x - 4y- 4y

= x2 - 2x + 1 - 4y2 - 4y - 1 

= (x - 1)2 - (4y2 + 4y + 1)

=  (x - 1)2 - (2y + 1)2

= (x - 1 - 2y  - 1)(x - 1 + 2y + 1)

= (x  - 2y - 1)(x + 2y)