Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng - Sai
a) 2 số nguyên tố bất kỳ cũng là 2 số nguyên tố cùng nhau Đ
b)Các số nguyên cùng nhau đều là các số nguyên tố S
c) 2 số lẻ thì nguyên tố cùng nhau S
d) Số chắn và số lẻ thì nguyên tố cùng nhau S
HT
Đúng - Sai
a) 2 số nguyên tố bất kỳ cũng là 2 số nguyên tố cùng nhau Đ
b)Các số nguyên cùng nhau đều là các số nguyên tố S
c) 2 số lẻ thì nguyên tố cùng nhau S
d) Số chắn và số lẻ thì nguyên tố cùng nhau KO B
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Gọi d là ước chung của a và ab+4
Ta có a chia hết cho d => ab chia hết cho d(1)
Lại có ab+4 chia hết cho d(2) ( VÌ D LÀ ƯỚC CHUNG CỦA ab+4)
Lấy (2) trừ (1) vế theo vế ta được : 4 chia hết cho d. Mà a là số lẻ nên d là số lẻ do đó d=1
Vậy...
CHÚC BẠN HỌC TỐT
. a) Cho (a + 5b) ⁝ 7. Chứng tỏ rằng (10a + b) ⁝ 7
-Ta có : (a+5b) \(⋮7\)
\(\Rightarrow10.\left(a+5b\right)⋮7\)
\(\Rightarrow10a+50b⋮7\)
\(\Rightarrow\left(10a+b\right)+49b⋮7\)
\(49b⋮7\Rightarrow\left(10a+b\right)⋮7\left(đpcm\right)\)
\((10a + b)⁝7 \)
\(\implies 5(10a + b)\vdots 7\)
\(\implies 5.10a + 5b\vdots 7\)
\(\implies 50a + 5b\vdots 7\)
\(\implies 49a + a + 5b\vdots 7\)
\(\implies 49a + (a + 5b)\vdots 7\)
\(49a\vdots 7 \implies (a +5b) \vdots 7(đpcm)\)
Cám ơn bạnミ★Hoa﹏❣Anh﹏❣Đào﹏❣★彡, mong bạn giải tiếp các câu còn lại nhé.
) Gọi d \(\in\)ƯC (a, a + b)\(\Rightarrow\) (a + b) - a Chia hết d \(\Rightarrow\) b chia hết d. Ta lại có a chia hết d nên d \(\in\)ƯC (a, b), do đó d =1 (vì a, b là hai số nguyên tố cùng nhau). Vậy (a, a + b) = 1.
Goi d = (a;a+b)
=> a chia het cho d ; a+b chia heets cho d
=>( a+b ) - a = b chia het cho d
=> (a;b) =d ; ma (a;b) =1
=> d =1
Vay (a;a+b) =1