Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
S = 1 - ( 1/3+1/3-1/5+1/5-+1/7+1/7+...+1/97-1/99)
S = 1 - 1/99
S = 98/99
\(2S=\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{97.99}\)
\(2S=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(2S=\frac{1}{3}-\frac{1}{99}\)
\(2S=\frac{33}{99}-\frac{1}{99}\)
\(S=\frac{32}{99}:2\)
\(S=\frac{16}{99}\)
a, Ta có:
\(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{0,6-\frac{3}{9}+\frac{3}{11}}+\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-1-\frac{3}{7}+\frac{3}{28}}=\frac{2\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}{3\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}+\frac{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}{-3\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}=\frac{2}{3}+\frac{-2}{3}=0\)
k đúng cho mình nha. Thanks!!!
a, bày cho mình cách viết bằng phân số đi , mình trình bày cách làm cho. k đúng cho mình nha.
Đặt \(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)
\(\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{997.999}\)
\(=\frac{3}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{997.999}\right)\)
\(=\frac{3}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{997}-\frac{2}{999}\right)\)
\(=\frac{3}{2}\left(\frac{2}{3}-\frac{2}{999}\right)\)
\(=\frac{3}{2}.\frac{664}{999}\)
\(=\frac{332}{333}\)
\(\frac{3}{3\cdot5}+\cdot\cdot\cdot+\frac{3}{997\cdot999}\)
\(=\frac{2}{3}\cdot\left(\frac{2}{3\cdot5}+\cdot\cdot\cdot+\frac{2}{997\cdot999}\right)\)
\(=\frac{2}{3}\cdot\left(\frac{1}{3}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{997}-\frac{1}{999}\right)\)
\(=\frac{2}{3}\cdot\left(\frac{1}{3}-\frac{1}{999}\right)\)
\(=\frac{2}{3}\cdot\frac{332}{999}\)
\(=\frac{664}{2997}\)
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
M = 1/3-1/5+1/5-1/7+...+1/97-1/99
= 1/3-1/99
=33/99-1/99
=32/99
M=1/2.(3/3-3/5+3/5-3/7+3/7-3/9+......+3/97-3/99)
M=1/2.(1-3/99)
M=1/2.32/33=16/33