Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(A=\frac{231}{4}.\frac{4}{21}=\frac{231}{21}=11\)
k nha
\(A=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(A=\frac{7}{4}\left[33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
\(A=\frac{7}{4}\left[33\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
\(A=\frac{7}{4}\left[33\times\frac{4}{21}\right]\)
\(A=\frac{7}{4}\times\frac{44}{7}\)
\(A=11\)
A=\(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
A=\(\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\frac{4}{21}\right]\)
A= \(\frac{7}{4}.\frac{44}{7}\)
A= 11
Vậy A= 11
A=7/4.(3333/1212+3333/2020+3333/3030+3333/4242)
A=7/4.(33/12+33/20+33/30+33/42)
A=7/4.33.(1/3*4+1/4*5+1/5*6+1/6*7)
A=231/4.(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)
A=231/4.(1/3-1/7)
A=231/4.4/21
A=11. Vay A=11
Nho k cho minh voi nhe
A= 7/4-(33/12x101+33/20x101+33/30x101+33/42x101)
=7/4-[101x(33/12+33/20+33/30+33/42)]
=7/4-44/7
=-127/28
A = 7/4 . (3333/1212 + 3333/2020 + 3333/3030 + 3333/4242)
A = 7/4 . (11/4 + 33/20 + 11/10 + 11/14)
A = 7/4 . 44/7
A = 11
Chúc bạn học tốt
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{4242}\right)\)
\(A=\frac{7}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{42.101}\right)\)
\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{42}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{6}\right)\)
\(A=\frac{7}{4}.33.\frac{1}{6}\)
\(A=\frac{7.33}{4.6}\)
\(A=\frac{7.3.11}{4.3.2}\)
\(A=\frac{7.11}{4.2}\)
\(A=\frac{77}{8}\)
=> A=\(\frac{7}{4}\) . ( \(\frac{33}{12}\) + \(\frac{33}{20}\) + \(\frac{33}{30}\) + \(\frac{33}{42}\) ) => A= \(\frac{7}{4}\).33. ( \(\frac{1}{12}\) + \(\frac{1}{20}\) + \(\frac{1}{30}\) + \(\frac{1}{42}\) )
=> A=\(\frac{7}{4}\).33. ( \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + \(\frac{1}{5.6}\) + \(\frac{1}{6.7}\) ) = \(\frac{7}{4}\).33.(\(\frac{1}{3}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{5}\) + \(\frac{1}{5}\) - \(\frac{1}{6}\) + \(\frac{1}{6}\) - \(\frac{1}{7}\) )
= \(\frac{7}{4}\) .33.(\(\frac{1}{3}\) - \(\frac{1}{7}\)) = \(\frac{7}{4}\) .33. \(\frac{4}{21}\) = 11. Vậy A=11
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)