Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-1}{2}=\frac{-18}{36};\frac{-1}{3}=\frac{-12}{36}\)
\(\Rightarrow\frac{-1}{2}< \frac{-17}{36}< \frac{-13}{18}< \frac{-1}{3}\)
\(\frac{-1}{2}< \frac{-11}{24}< \frac{-5}{12}< \frac{-3}{8}< \frac{-1}{3}\)
Bài làm:
Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)
=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)
Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)
Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)
\(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1+\frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(P< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}=\frac{7}{4}-\frac{1}{2019}< \frac{7}{4}\)
Ta có\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}\)<\(\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}\)=\(\frac{5}{6}\)(6 c/s \(\frac{1}{5}\))
Ta lại có \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{17}\)<\(\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\)=\(\frac{7}{11}\)(7 c/s \(\frac{1}{11}\))
Suy ra \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}\)<\(\frac{110}{55}\)=2
Vậy...
Hok tốt
Đặt \(A=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}\)
Ta có: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{6}{5}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}=\frac{7}{11}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< \frac{6}{5}+\frac{7}{11}\)
\(\Rightarrow A< \frac{101}{55}< \frac{110}{55}=2\)
\(\Rightarrow A< 2\)( ĐPCM )
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)