Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x-y\sqrt{2021}}{y-z\sqrt{2021}}=\frac{m}{n}\inℚ\left(m,n\inℤ,n\ne0\right)\Rightarrow nx-ny\sqrt{2021}=my-mz\sqrt{2021}\)\(\Rightarrow nx-my=\left(ny-mz\right)\sqrt{2021}\)
Vì x, y, z, m, n là các số nguyên nên \(nx-my\inℤ\)và \(ny-mz\inℤ\)
Khi đó: \(nx-my=0\)và \(ny-mz=0\)suy ra \(\frac{m}{n}=\frac{y}{z}=\frac{x}{y}\Rightarrow y^2=xz\)
Theo đề bài thì \(x^2+y^2+z^2\)là số nguyên tố hay \(x^2+2y^2+z^2-y^2=x^2+2zx+z^2-y^2=\left(x+z\right)^2-y^2=\left(x+y+z\right)\left(x+z-y\right)\)là số nguyên tố
Khi đó \(x+z-y=1\Leftrightarrow x+z=1+y\)
\(\Rightarrow x^2+z^2+2y^2=y^2+2y+1\Leftrightarrow\left(y-1\right)^2+x^2+z^2-2=0\)
Vì x, y, z là số nguyên dương nên x = y = z = 1
Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)
Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)
\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=3\)
Vậy Min(H) = 1/2 khi x = y = z = 3
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-\frac{x}{y}-\frac{y}{x}\)
\(=\frac{x^2-xy}{y^2}+\frac{y^2-xy}{x^2}\)
\(=\frac{x^4-x^3y+y^4-xy^3}{x^2y^2}\)
\(=\frac{x^3\left(x-y\right)-y^3\left(x-y\right)}{x^2y^2}\)
\(=\frac{\left(x-y\right)^2\left(x^2+xy+y^2\right)}{x^2y^2}\)
Xem lời giải câu 6 IMO 1988
đọc chả hiểu gì bạn ơi