K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv

Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)

Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)

\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)

\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)

\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)

Dấu "=" xảy ra khi: \(x=y=z=3\)

Vậy Min(H) = 1/2 khi x = y = z = 3

23 tháng 8 2019

mong mọi người nhanh giúp

13 tháng 5 2017

\(xy+yz+zx-xyz=1-x-y-z+xy+yz+zx-xyz\)

\(=\left(1-x\right)-y\left(1-x\right)-z\left(1-x\right)+yz\left(1-x\right)\)

\(=\left(1-x\right)\left(1-y-z+yz\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(xy+yz+zx+xyz+2=1+x+y+z+xy+yz+zx+xyz\)

\(=\left(1+x\right)+y\left(1+x\right)+z\left(1+x\right)+yz\left(1+x\right)\)

\(=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(1+x+y+z=1+1\Rightarrow1+x=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}\)

Tương tự ta cũng có: \(1+y\ge2\sqrt{\left(1-z\right)\left(1-x\right)}\)

\(1+z\ge2\sqrt{\left(1-x\right)\left(1-y\right)}\)

Vậy \(S\le\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{8\left(1-x\right)\left(1-y\right)\left(1-z\right)}=\frac{1}{8}\)

11 tháng 2 2020

Cho a, b, c mà bắt chứng minh x, y, z nên ko chứng minh đc là đúng òi:)

\(VT-VP=\Sigma_{cyc}\frac{\left(x-y\right)^4}{4xy\left(x^2+y^2\right)}\ge0\)

a,b,c??? chỗ nào vậy bé ?? :)))

16 tháng 8 2020

bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản

ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1

ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)

\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)

\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)

do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)

\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)

dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)

25 tháng 8 2019

Thay \(z=x+y+1\) vào P ta có:

\(P=\frac{x^3y^3}{\left\{\left[x+y\left(x+y+1\right)\right]\left[y+x\left(x+y+1\right)\right]\left[xy+y+x+z\right]\right\}^2}\)

    \(=\frac{x^3y^3}{\left[\left(x+1\right)\left(y+1\right)\left(x+y\right)^2\right]^2}\)

Mà \(x+1\ge2\sqrt{x};y+1\ge2\sqrt{y};x+y\ge2\sqrt{xy}\)

=> \(P\le\frac{x^3y^3}{\left(2\sqrt{x}.2\sqrt{y}.4xy\right)^2}=\frac{1}{256}\)

MaxP=1/256  khi \(a=b=1;c=3\)

23 tháng 5 2021

Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).

\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).

Ta có: 

\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)

\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).

Ta có:

\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).

\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).

\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).

\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).

Chứng minh tương tự, ta được:

\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).

Chứng minh tương tự, ta được:

\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).

\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)

\(\left(4\right)\).

Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).

\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)

(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).

\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(P\ge\frac{\sqrt{5}}{3}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).

Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).