Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC
=> góc EAM = góc FAM
=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)
=> EA=FA và EM = FM (1)
TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)
Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)
Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)
A E B F C D M
a, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
MB = MC (gt)
góc B = góc C (gt)
=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
b, Xét t/g AEM và t/g AFM có:
EM = FM (t/g BEM = t/g CFM)
góc AEM = góc AFM = 90 độ (gt)
AM chung
=> t/g AEM = t/ AFM (c.g.c)
=> AE = AF
=> tg/ AEF cân tại A
Mà AM là tia phân giác của t/g AEF
=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF
c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC
=> AM cũng là đường trung trực của BC (1)
=> góc AMB = 90 độ
Xét t/g DMB và t/g DMC có:
MB = MC (gt)
góc DMB = góc DMC = 90 độ (cmt)
DM chung
=> t/g DMB = t/g DMC (c.g.c)
=> DB = DC => D thuộc trung trực của BC
Mà MB = MC => M thuộc trung trực của BC
=> DM là trung trực của BC (2)
Từ (1) và (2) => A,D,M thẳng hàng
Giải thích các bước giải:
a)Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
AB2+AC2=BC2
=>BC2=62+82
=>BC2=100
=>BC=10 (cm)
b)Xét tam giác ABD vuông tại A và tam giác EBD vuông tai E có:
BD : cạnh chung
góc ABD=góc EBD (BD là p/g của góc ABC)
Suy ra: tam giác ABD= tam giác EBD
c)Ta có AC là đường cao thứ nhất của tam giác BFC
FE là đường cao thứ 2 của tam giác BFC
Mà AC và FE cắt nhau tại D nên D là trực tâm
=>BD là đường cao thứ 3 của tam giác BFC
Mà BD cũng là đường p/g của tam giác BFC nên: tam giác BFC cân ở B
Mà góc FBC=60o(gt)
nên: tam giác FBC đều
d mình đang suy nghĩ do khó quá
A B C M H K E F 1 2 I
a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến ( t/c )
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của BC => MB = MC = 1/2 BC
b)-Vì tam giác ABC cân nên góc B = góc C
Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)
Xét tam giác MHB và tam giác MKC có :
góc MHB = góc MKC ( =90 độ )
MB = MC ( cm ở câu a )
góc B = góc C (cmt )
Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )
=> MH = MK ( cặp cạnh tương ứng )
* Gọi I là giao điểm của AM và HK
Vì tam giác MHB = tam giác MKC ( cmt )
=> BH = CK ( cặp canh t/ư)
Mà AB = AC ( tam giác ABC cân tại A )
=> AB - BH = AC - CK
=> AH = AK
=> Tam giác AHK cân tại A ( d/h )
Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác
=> AM là tia phân giác của góc BAC
Hay AI là tia phân giác của góc BAC
- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến (t/c)
=> AI là đường cao đồng thời là trung tuyến của tam giác AHK
=> AM vuông góc HK tại I và I là trung điểm của HK
=> AM là đường trung trực của HK ( d/h )
c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H
Mà H là trung điểm EM
=> AB là đường trung trực EM
=> AE = AM ( t/c )
Tương tự : AC là đường trung trực của MF
=> AF = AM (t/c)
Suy ra : AE = AF ( = AM )
=> Tam giác AEF cân tại A ( d/h )
A B C E D H I
Xét tam giác BCD và tam giác CBE
có BC chung
góc CDB = góc CEB=900
góc EBC=góc DCB ( vì tam giác ABC cân tại A)
suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn) (1)
b) Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)
Mà góc CBD + góc DBE= góc CBE (3)
góc BCE+góc ECD = góc BCD (4)
góc EBC=góc DCB ( vì tam giác ABC cân tại A) (5)
Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD
hay góc IBE = góc ICD
c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)
Xét tam giác vuông ADI và tam giác vuông AEI có
AI chung, AD=AE (CMT)
suy ra tam giá ADI = tam giác AEI (cạnh huyền-cạnh góc vuông)
suy ra góc EAI = góc DAI (hai góc tương ứng)
suy ra AI là tia phân giác của góc BAC
mà tam giác ABC cân tại A
suy ra AI là đường phân giác đồng thời là đường cao
AI vuông góc với BC tại H
a: Xét ΔAKM vuông tại K và ΔANM vuông tại N có
AM chung
góc KAM=góc NAM
=>ΔAKM=ΔANM
=>MK=MN
b: BM=CM=3cm
AM=căn 5^2-3^2=4cm
c; AK=AN
MK=MN
=>AM là trung trực của KN
=>AM vuông góc KN