Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) A = 4x2 + 4x + 11
= 4x2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R
=> ( 2x + 1 )2 + 10 > 10
=> A > 10
=> Giá trị nhỏ nhất của A là 10
Dấu = xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)
b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x + 3 )
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
Đặt t = x2 + 5x
=> B = ( t - 6 ) ( t + 6 )
= t2 - 36
Nhận xét :
t2 > 0 với mọi t thuộc R
=> t2 - 36 > - 36
=> B > - 36
=> Giá trị nhỏ nhất của B là - 36
Dấu = xảy ra khi : t2 = 0
=> t = 0
mà t = x2 + 5x
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)
c ) C = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x thuộc R
( y - 2 )2 > 0 với mọi y thuộc R
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> C > 2
=> Giá trị nhỏ nhất của C là 2
Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2
I=(2x-1)^2+(x-3)^2
=4x^2-4x+1+x^2-6x+9
=5x^2-10x+10
=5(x^2-2x+1)+5
=5(x-1)^2+5
Vì 5(x-1)^2>=0 với mọi x nên I= 5(x-1)^2+5>=5 với mọi x
Dấu bằng xảy ra khi:(x-1)^2=0
x-1=0
x=1
Vậy GTNN cua biểu thức T=5 khi x=1
c,M=(x-2)(x-5)(x^2-7x+10)
=(x^2-7x+10)^2
Vì M=(x^2-7x+10)^2>=0 với mọi x nên dấu bằng xảy ra khi:
x^2-7x+10=0
(x-2)(x-5)=0
Suy ra:x=2 hoặc x=5
Vậy GTNN của M là 0 tại x=2 hoặc x=5
d,T=(4x^2+ 8xy+4y^2)+(x^2 -2x+1)+(y^2+2y+1) -2
=4(x^2+2xy+y^2)+ (x-1)^2+ (y+1)^2 -2
=4(x+y)^2 +(x-1)^2 +(y+1)^2 -2
bạn tự lập luận 4(x+y)^2 +(x-1)^2 +(y+1)^2 -2 >=-2 với mọi x
Dấu = xảy ra khi:x=1,y=-1
Vậy GTNN của T là -2 tại x=1,y=-1
b,ý b dễ rồi mình cho bạn đáp án
GTNN cua N là 1 tại x=0
GTNN là giá trị nhỏ nhất.Chúc bạn học tốt
1) \(x-2y=3\Rightarrow\hept{\begin{cases}x=3+2y\\y=\frac{x-3}{2}\end{cases}}\)
\(\Rightarrow A=2x\left(x+2y-3\right)-y\left(6x-3y-10\right)+x-7+\left(x-3y\right)^2\)
\(=2x^2+4xy-6x-6xy+3y^2+10y+x-7+x^2-6xy+9y^2\)
\(=3x^2+12y^2-8xy-5x+10y-7\)
\(=3.\left(3+2y\right)^2+12y^2-8\left(3+2y\right).y-5\left(3+2y\right)+10y-7\)
\(=3\left(9+12y+4y^2\right)+12y^2-8\left(3y+2y^2\right)-15-10y+10y-7\)
\(=27+36y+12y^2+12y^2-24y-16y^2-15-10y+10y-7\)
\(=8y^2+12y+5\)
\(M=\left(x^2-2x+1\right)\left(1+2x\right)-\left(x^2+2x+1\right)\left(1-3x\right)-\left(3-6x\right)\left(x^2+3x+2\right)\)
\(=x^2+2x^3-2x-4x^2+1+2x-x^2+3x^8-2x+6x^2-1+3x-3x^2-9x-6+6x^8\)\(+18x^2+12x=11x^3+17x^2+4x-6\)
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
\(P=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(P=5x^3-15x+7x^2-5x^3-7x^2\)
\(P=-15x\)
Thay x=5 vào ta được:
\(P=-15\cdot5=-75\)
Kid nhầm rồi :v
5x(x2 - 3) + x2(7 - 5x) - 7x2
= 5x3 - 15x + 7x2 - 5x3 - 7x2
= -15x (1)
Thay x = -5 vào (1), ta có:
(-15).(-5) = 75
Quá dễ D:
\(B=4x^2-4x=4\left(x^2-x\right)=4\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=4\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=4\left(x-\frac{1}{2}\right)^2-1\ge-1\)
Vậy GTNN của B là -1\(\Leftrightarrow x=\frac{1}{2}\)
\(C=-x^2-x+1=-\left(x^2+x-1\right)\)
\(=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\right]=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
...
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)
\(A=4x^2-12x+9-x^2-4x+5+2\)
\(A=3x^2-12x+16\)
\(A=3\left(x^2-4x+4\right)\)
\(A=3\left(x-2\right)^2\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow x=2\)
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)
\(=4x^2-12x+9-x^2-4x+5+2\)
\(=3x^2-16x+16\)
\(=3\left(x^2-\frac{16}{3}x+16\right)\)
\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)
\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)
dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)
\(\Leftrightarrow x=\frac{8}{3}\)
vậy...