Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(f\left(0\right)=a.0^2+b.0+c=c=1\)
\(f\left(1\right)=a.1^2+b.1+c=a+b+c=2\Rightarrow a+b+1=2\Rightarrow a+b=1\) (1)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\Rightarrow2\left(2a+b\right)+1=2\Rightarrow2\left(2a+b\right)=1\Rightarrow2a+b=\frac{1}{2}\) (2)
Lấy (2) trừ (1) ta được: \(a=\frac{-1}{2}\)
\(\Rightarrow b=1-\left(\frac{-1}{2}\right)=\frac{3}{2}\)
Vậy a = -1/2 , b = 3/2 , c = 1
\(a\ne0\)
\(f\left(1\right)=2\)
\(\Rightarrow a+b=2\)
\(f\left(3\right)=8\)
\(\Rightarrow3a+b=8\)
\(\Rightarrow2a+a+b=8\)
\(\Rightarrow2a=6\)
\(\Rightarrow a=3\)
\(\Leftrightarrow b=-1\)
Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)
a≠0
ƒ (1)=2
⇒a+b=2
ƒ (3)=8
⇒3a+b=8
⇒2a+a+b=8
⇒2a=6
⇒a=3
⇔b=−1
Vậy đa thức đã cho là ƒ (x)=3x−1
\(f\left(10\right)=100a+10b+c=30a+\left(70a+10b\right)+c=30a+c\)
\(f\left(-3\right)=9a-3b+c=30a-21a-3b+c=30a+c\)
Như vậy thì \(f\left(10\right)f\left(-3\right)=\left(30a+c\right)^2\)không thể là 1 số âm.
Chúc bạn học tốt!
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(1\right)=a+b+c=0\)
\(f\left(-1\right)=a-b+c=0\)
\(\Leftrightarrow f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c=0\)
\(\Leftrightarrow2a+2c=0\)
\(\Leftrightarrow2a=-2c\)
\(\Leftrightarrow a=-c\)
\(\Rightarrowđpcm\)