Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5+5^2+5^3+5^4+...+5^{2012}\)
\(S=\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2010}+5^{2012}\right)\)
\(S=\left(5+5^3\right)+5\left(5+5^3\right)+...+5^{2009}\left(5+5^3\right)\)
\(S=130+5\cdot130+...+5^{2009}\cdot130\)
\(S=65\cdot2+5\cdot65\cdot2+...+5^{2009}\cdot65\cdot2\)
\(S=65\left(2+5\cdot2+...+5^{2009}\cdot2\right)⋮65\) (đpcm)
=))
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
Bài 1 :
\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)
=> n + 1 \(\in\)Ư(-1) = {1;-1}
Tự lập bảng xét giá trị bn nhé !
Bài 2 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow30=x\left(1+2y\right)\)
Tự lập bảng nhé !
Câu 1,
\(S=1+2+2^2+...+2^7\)
\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(=3+2^2.3+2^4.3+2^6.3\)
\(=3\left(1+2^2+2^4+2^6\right)⋮3\)
Nên S chia hết cho 3
Câu 2 ,
\(A=5+5^2+5^3+...+5^{20}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{19}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{19}.6\)
\(=6\left(5+5^3+...+5^{19}\right)⋮6\)
Nên A chia hết cho 6
=> D = (5 + 5^2) +...+(5^2015 + 5^2016)
=> D = 5 . (1 + 5 ) + ... + 5^2015 .( 1 + 5)
=> D = 5 . 6 +...+ 5^2015 . 6
=> D = 6 . (5 +...+ 5^20015)
D chia hết cho 630
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
5+5^2+5^3+...+5^2006=(5+5^4)+(5^2+5^5)+(5^3+5^6)+...+(5^2003+5^2006). =5.(1+5^3)+5^2.(1+5^3)+5^3.(1+5^3)+...+5^2003.(1+5^3).
= 5.126+5^2.126+5^3.125+...+5^2003.126
=126.(5+5^2+5^3+...+5^2003)chia hết cho 126. Vậy 5+5^2+5^3+...+5^2006 chia hết cho 126