K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2016

góc IBC=góc ICB=(180-135):2=22,5

=>góc B và góc C=22,5x2=45

=>góc A=180-45x2=90

=>góc Alaf góc vuông

19 tháng 1 2016

tại sao góc IBC = góc ICB? Bùi Đức Hà

1 tháng 1 2016

A B C d H K

Xét tam giác ABH và tam giác ACK có

CKA=BHA=90 độ

BA=CA(gt)

Vậy tam giác ABH=tam giác ACK(cạnh huyền góc nhọn)

tick nha m.n

1 tháng 1 2016

chưa ai trả lời được hết à

 

15 tháng 1 2020

Tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\) 

Mà 2 tia phân giác góc B và Góc C cắt nhau tại I 

=> Tạo ra tam giác BIC cân tại I  (do \(\widehat{B}=\widehat{C}\Leftrightarrow2\widehat{CBI}=2\widehat{BCI}\Rightarrow\widehat{CBI}=\widehat{BCI}\))

Khi đó tam giác BIC có :

 \(\widehat{BIC}+2\widehat{BCI}=180^{\text{o}}\Rightarrow\widehat{BCI}=\widehat{CBI}=30^{\text{o}}\Rightarrow\widehat{C}=\widehat{B}=60^{\text{o}}\Rightarrow\widehat{A}=60^{\text{o}}\)(tổng 3 góc tam giác)

14 tháng 3 2020

a, Vì △ABC cân tại A => AB = AC và ∠ABC = ∠ACB = (180o - ∠BAC) : 2 = (180o - 80o) : 2 = 100o : 2 = 50o

Xét △ABE vuông tại E có: ∠ABE + ∠BAE = 90o (tổng 2 góc nhọn trong △ vuông) 

=> ∠ABE + 80o = 90o  => ∠ABE = 10o

Xét △EBA vuông tại E và △DCA vuong tại D 

Có: AB = AC (cmt)

   ∠BAC là góc chung

=> △EBA = △DCA (ch-gn)

b, Vì △EBA = △DCA (cmt) => AE = AD (2 cạnh tương ứng) và ∠ABE = ∠ACD (2 góc tương ứng)

Ta có: AD + BD = AB và AE + EC = AC

Mà AD = AE (cmt) ; AB = AC (cmt)

=> BD = EC

Xét △BDO vuông tại D và △CEO vuông tại E

Có: BD = EC (cmt)

  ∠DBO = ∠ECO (cmt)

=> △BDO = △CEO (cgv-gnk)

=> BO = OC (2 cạnh tương ứng)

Xét △BAO và △CAO

Có: AB = AC (cmt)

      BO = OC (cmt)

   AO là cạnh chung

=> △BAO = △CAO (c.c.c)

=> ∠BAO = ∠CAO (2 góc tương ứng)

Mà AO nằm giữa AB, AC

=> AO là tia phân giác ∠BAC

c, Sửa đề: Gọi BM và CN.... góc kề bù với ∠ABC và ∠ACB

Gọi góc kề bù với ∠ABC và ∠ACB lần lượt là: ∠CBx và ∠BCy

Ta có: ∠ABC + ∠CBx = 180o (2 góc kề bù)  và ∠ACB + ∠BCy = 180o (2 góc kề bù)

Mà ∠ABC = ∠ACB (cmt) 

=> ∠CBx = ∠BCy  (1)

Vì BM là phân giác CBx => ∠CBM = ∠MBx = ∠CBx : 2     (2)

Vì CN là phân giác ∠BCy => ∠BCN = ∠NCy = ∠BCy : 2    (3)

 Từ (1) ; (2) ; (3) => ∠BCN = ∠CBM 

Xét △BCF có: ∠BCF = ∠FBC (cmt) => ∠BCF cân tại F  => BF = FC

Xét △ABF và △ACF 

Có: AB = AC (cmt)

       BF = FC (cmt)

   AF là cạnh chung

=> △ABF = △ACF (c.c.c)

=> ∠BAF = ∠CAF (2 góc tương ứng)

=> AF là tia phân giác góc BAC

Mà AO là tia phân giác góc BAC

=> AF ≡ AO 

=> 3 điểm A, O, F thẳng hàng

15 tháng 3 2020

Cảm ơn bạn Nhật Hạ nha \(\omega\)

15 tháng 1 2020

cho mk hỏi bn có viết sai đề bài ko

mk ko thấy điểm M và F nào cả

15 tháng 1 2020

Hình tự vẽ

Vì tam giác ABC cân tại A => góc B = góc C 

=> \(\widehat{B}=\widehat{C}=\left(180^{\text{o}}-2.70^{\text{o}}\right):2=20^{\text{o}}\)

=> \(\widehat{CBI}=\widehat{BCI}\) = 20 : 2 = 10o

=> Xét tam giác BIC có : \(\widehat{BIC}=\)180o - 10o - 10o = 160o

Hình tự vẽ nhé !

Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\left(1\right)\)

Xét tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(2\right)\) ( tính chất tổng 3 góc 1 tam giác )

Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-70^0}{2}=55^0\)

Vì tia phân giác góc B và C cắt nhau tại I \(\Rightarrow\widehat{BCI}=\widehat{CBI}=55^0\div2=27,5^0\) 

Xét tam giác BIC có \(\widehat{BCI}+\widehat{BIC}+\widehat{CBI}=180^0\) ( t/c tổng 3 góc 1 tam giác )

\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{BCI}+\widehat{CBI}\right)=180^0-\left(27,5^0+27,5^0\right)=125^0\)

Bài quen quen, hình như là bài mình đăng