K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

21 tháng 4 2020

B C A

Có \(\Delta ABC~\Delta DEF\)

\(\Rightarrow\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)

Ta có cạnh nhỏ nhất của \(\Delta ABC\)là 6 cm mà cạnh nhỏ nhất của \(\Delta DEF\)là 9 cm

vậy \(\Rightarrow DE=9cm\)

Độ dài cạnh DE là : \(\frac{AB}{DE}=\frac{AC}{DF}\Leftrightarrow\frac{6}{9}=\frac{14}{DF}\)

\(\Rightarrow DF=\frac{14.9}{6}=21cm\)

Độ dài cạnh EF là : \(\frac{AB}{DE}=\frac{AC}{DF}\Leftrightarrow\frac{6}{9}=\frac{10}{EF}\)

\(\Rightarrow EF=\frac{10.9}{6}=15cm\)

Chúc bạn học tốt !

21 tháng 4 2020

Bài làm

Gọi độ dài của DF là x

Độ dài của EF là y

Vì tam giác ABC ~ Tam giác DEF

=> 

hay 

Vậy DF = 21 ( cm )

EF = 15 ( cm )

# Vô thống kê của mik xem hình #

 
18 tháng 4 2020

xdhxef

18 tháng 4 2020

6.)

Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất  của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.

Theo đề:\(A'B'\)=4,5

Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

    \(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)

   \(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)

20 tháng 6 2020

a, Xét tam giác ABC có:

AC2+AB2=242+182=900=302=BC2AC2+AB2=242+182=900=302=BC2⇒⇒ Tam giác ABC vuông tại A

Xét tam giác ABC và MDC có:

DMCˆ=BACˆDMC^=BAC^

CˆC^ là góc chung

⇒⇒ Tam giác ABC ~MDC ( g.g)

b, Vì tam giác ABC~MDC ⇒ABAC=MDMC=34⇒MD=3MC4⇒ABAC=MDMC=34⇒MD=3MC4ACBC=MCDC=45⇒DC=5MC4ACBC=MCDC=45⇒DC=5MC4

Mà:

ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4=7212MC3⇒12MC=72.3=216⇒MC=18cm=7212MC3⇒12MC=72.3=216⇒MC=18cm⇒MD=3.184=13,5cm⇒MD=3.184=13,5cm

⇒DC=5.184=22,5cm

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78

Xét ΔABC có

D là trung điểm của AB

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: \(DF=\dfrac{BC}{2}\)

Xét ΔABC có

D là trung điểm của AB

E là trung điểm của BC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: \(DE=\dfrac{AC}{2}\)

Xét ΔACB có

F là trung điểm của AC
E là trung điểm của BC

Do đó: FE là đường trung bình của ΔACB

Suy ra: \(FE=\dfrac{AB}{2}\)

Ta có: \(C_{DEF}=DF+DE+EF\)

\(=\dfrac{AB+AC+BC}{2}\)

\(=\dfrac{C_{ABC}}{2}\)