Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=5+52+53+...+58
A= (5+52)+(53+54) + ... + (57+58)
A= 5( 1+5) + 52(5+52)+... + 56(5+52)
A= 30 + 52 . 30 + ... +56.30
A = 30 ( 1 + 52+...+56) chia hết cho 30
=> A chia hết cho 30
b)B=3+33+35+37+...+329
B = (3 + 33 + 35) + (37+39+311) + ... + ( 327+328+329)
B = 273 + 36 (3 + 33 + 35) + ... + 326 (3 + 33 + 35)
B = 273 + 36.273 + ... + 326.273
B = 273 ( 1 + 36+...326) chia hết cho 273
=> B chia hết cho 273
\(a;A=1+3+3^2+...+3^{29}\)
\(=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{28}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{28}\right)=4\left(1+3^2+...+3^{28}\right)⋮4\left(đpcm\right)\)
b;Xét \(3A=3+3^2+3^3+...+3^{30}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{30}\right)-\left(1+3+3^2+...+3^{29}\right)\)
\(\Leftrightarrow2A=3^{30}-1\Rightarrow A=\frac{3^{30}-1}{2}\)
a, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)
\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)
\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)
b, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)
\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)
\(M=6\cdot259+...+6^{96}\cdot259\)
\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)
Vậy \(M⋮259(đpcm)\)
5^6+5^7+5^8
=5^6.(1+5+5^2)
=5^6.31 chia hết cho 31
7^6+7^5-7^4
=7^4.(7^2+7-1)
=7^4.55 chia hết cho 11
BÀI 2:
a) \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\) \(⋮\)\(31\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)
c) \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)
d) mk chỉnh đề
\(1+2+2^2+2^3+...+2^{59}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)
\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)
S = 21 + 22 + 23 + ........... + 2100
2S = \(2^2+2^3+2^4+.........+2^{101}\)
2S - S = \(\left(2^2+2^3+2^4+.......+2^{101}\right)-\left(2^1+2^2+2^3+.......+2^{100}\right)\)
\(2S-S=2^2+2^3+2^4+.......+2^{101}-2^1-2^2-2^3-.......-2^{100}\)
S = \(2^{101}-2^1\)
Mà 2101 chia hết cho 5 => S \(⋮\)5
A=5+52+53+....+59+510
=> A=(5+52)+(53+54)+...+(59+510)
=> A=5(1+5)+53(1+5)+....+59(1+5)
=> A=5.6+53.6+....+59.6
=> A=6(5+53+....+59)
=> A chia hết cho 6 (đpcm)
4 . 42 . 43 . 44 . ... . 4100
= 4 ( 1 + 4 ) + 43 ( 1 + 4 ) + ... + 499 ( 1 + 4 )
= 4 . 5 + 43 . 5 + ... + 499 . 5
= 5 ( 4 + 43 + ... + 499 ) chia hết cho 5 ( đpcm )
bonking làm đúng đó
~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
^_^
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
B=30+31+32...+3100B=30+31+32...+3100
=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)
=30×13+33×13+...+398×13=30×13+33×13+...+398×13
=13×(30+33+...+3