Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)<0\)
\(\Rightarrow x-\frac{2}{5}<0\) hoặc \(x-\frac{2}{5}>0\)
\(x+\frac{3}{7}>0\) \(x+\frac{3}{7}<0\)
\(\Rightarrow x<\frac{2}{5}\) hoặc \(x>\frac{2}{5}\)
\(x>-\frac{3}{7}\) \(x<-\frac{3}{7}\)
\(\Rightarrow-\frac{3}{7} hoặc \(x\in rỗng\)
vậy \(-\frac{3}{7}
b) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)
\(\frac{-1}{12}\le x\le\frac{1}{4}\)
\(\frac{-1}{12}\le x\le\frac{3}{12}\)
\(\Rightarrow x=\frac{-1}{12};0;\frac{1}{12};\frac{2}{12};\frac{3}{12}\)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Sai thì thôi nhé!
a) \(f\left(-3\right)=\frac{2}{3}\times-3-\frac{1}{2}=-2-\frac{1}{2}=\frac{-4}{2}-\frac{1}{2}=\frac{-5}{2}\)
\(f\left(\frac{3}{4}\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\)
b) \(f\left(x\right)=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x-\frac{1}{2}=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x=1\Leftrightarrow x=1:\frac{2}{3}\Leftrightarrow x=1\times\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\)
c)\(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\left(1\right)\)
\(A\left(\frac{3}{4};-\frac{1}{2}\right)\)
\(A\left(\frac{3}{4};\frac{-1}{2}\right)\Rightarrow\hept{\begin{cases}x_A=\frac{3}{4}\\y_A=\frac{-1}{2}\end{cases}}\)
Thay \(x_A=\frac{3}{4}\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\ne y_A\)
Vậy điểm A không thuộc đồ thì hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
\(B\left(0,5;-2\right)\)
\(B\left(0,5;-2\right)\Rightarrow\hept{\begin{cases}x_B=0,5\\y_B=-2\end{cases}}\)
Thay \(x_B=0,5\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times0,5-\frac{1}{2}=\frac{1}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=\frac{-1}{6}\ne y_B\)
Vậy điểm B không thuộc đồ thị hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
Bài 1: gọi 3 số cần tìm là a;b;c
Theo đề bài a.b.c=5(a+b+c). Vế phải chia hết cho 5 nên a.b.c chia hết cho 5 => trong 3 số a;b;c có ít nhất 1 số chia hết cho 5
Giả sử c là số chia hết cho 5 và c là 1 số nguyên tố => c=5
=> a.b.5=5(a+b+5)=> a.b=a+b+5=> a.b-a=b+5 => a(b-1)=(b-1)+6 => a = 1+6/(b-1)
Vì a;b là các số nguyên => để a là số nguyên thì b-1 phải là ước của 6, do các số nguyên tố đều lớn hơn 1
=> b-1={1; 2;3;6}=> b={2;3;4;7} do b là số nguyên tố nên b=4 loại => b={2;3;7}
Thay vào biểu thức tính a => a={7; 4; 2} do a là số nguyên tố nên a=4 loại => b=3 loại
Vậy 3 số cần tìm là 2;5;7
Thử: 2.5.7=70; 5(2+5+7)=70
1) ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}.\)
ADTCDTSBN
\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}=\frac{x^3+y^3-z^3}{8+27-64}=\frac{-29}{-29}=1\)
=>....
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)Và x3+y3-z3=-29
Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^3}{8}=\frac{y^3}{17}=\frac{z^3}{65}=\frac{x^3+y^3-z^3}{8+17-64}=\frac{14}{39}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{14}{39}\Rightarrow x=\frac{28}{39}\\\frac{y}{3}=\frac{14}{39}\Rightarrow y=\frac{14}{13}\\\frac{x}{4}=\frac{14}{39}\Rightarrow z=\frac{56}{39}\end{cases}}\)
Vậy x =\(\frac{28}{39}\)
y = \(\frac{14}{13}\)
z = \(\frac{56}{39}\)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15