Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có : \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Chúc bạn học tốt !!!
\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)
\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(b+6\right)\left(a-5\right)\)
\(\Leftrightarrow ab-6a+5b-30=ab-5b+6a-30\)
\(\Leftrightarrow ab-6a+5b-30-ab+5b-6a+30=0\)
\(\Leftrightarrow\left(ab-ab\right)-\left(6a+6a\right)+\left(5b+5b\right)-\left(30-30\right)=0\)
\(\Leftrightarrow10b-12a=0\)
\(\Leftrightarrow10b=12a\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{12}\)
\(\Leftrightarrow\frac{a}{5}=\frac{b}{6}\)
\(\Leftrightarrow\frac{a}{b}=\frac{5}{6}\left(đpcm\right)\)
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow ab\left(c^2+d^2\right)=cd\left(a^2+b^2\right)\)
\(\Leftrightarrow abc^2+abd^2=cda^2+cdb^2\)
\(\Leftrightarrow abc^2+abd^2-cda^2-cdb^2=0\)
\(\Leftrightarrow ac.bc+ad.bd-ac.ad-bc.bd=0\)
\(\Leftrightarrow bc\left(ac-bd\right)-ad\left(ac-bd\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(bc-ad\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\bc=ad\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\end{cases}}\)
1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
bài 1 sai đề ko bạn
đề nào và mình ghi sai thứ tự bài