Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)
\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )
Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)
\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)
\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)
Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)
Bài 2 , để chiều nhé bạn
Bài 3 :
Cách 1 :
\(\left|x-1004\right|-\left|x+1003\right|\)
+ ) Xét \(x< -1003\)suy ra
\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)
Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)
+ ) Xét \(-1003\le x< 1004\). Suy ra
\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)
Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)
+ ) Xét \(x\ge1004\). Suy ra
\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)
Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)
Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007
Vậy \(A_{max}=2007\)khi \(x< -1003\)
gọi ba số được chia thành lần lượt là x,y,z
theo bài ra ta có:
\(\frac{2}{5}\):\(\frac{3}{4}\) :\(\frac{1}{6}\) =\(\frac{24}{60}\) :\(\frac{45}{60}\):\(\frac{10}{60}\) =24:45:10
=>\(\frac{x}{24}\)=\(\frac{y}{45}\)=\(\frac{z}{10}\)=> \(\frac{x^2}{576}\) =\(\frac{y^2}{2025}\) =\(\frac{z^2}{100}\)
áp dụng công thức của dãy tỉ số bằng nhau có
\(\frac{x^2}{576}\)=\(\frac{y^2}{2025}\)=\(\frac{z^2}{100}\)=\(\frac{x^2+y^2+z^2}{576+2025+100}\)=\(\frac{24309}{2701}\)=9
có hai trường hợp
TH1 \(\frac{x}{24}\)=\(\frac{y}{45}\)=\(\frac{z}{10}\)=3 =>x=72;y=135;z=30=>A=237
TH2 \(\frac{x}{24}\)=\(\frac{y}{45}\) =\(\frac{z}{10}\) = -3 =>x= -72;y= -135;z= -30 =>A= -237
Vậy A=237 hoặc A= -237