\(\frac{a}{b+c}\)= \(\frac{b}{c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Theo tính chất dãy tỉ số bằng nhau:

\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{1}{2}\)

11 tháng 5 2019

ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

áp dụng tc của dãy tỉ số bằng nhau ta có:

 \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}\)

Vậy ...

29 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{4a^4}{4c^4}=\frac{5b^4}{5d^4}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{4a^4}{4b^4}=\frac{5b^4}{5d^4}=\frac{4a^4+5b^4}{4b^4+5d^4}\)

\(\frac{4a^4}{4b^4}=\frac{a^4}{b^4}\)

vì \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{a}{c}\cdot\frac{b}{d}\cdot\frac{a}{c}\cdot\frac{b}{d}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}\)

\(\frac{a^4}{c^4}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}=\frac{4a^4+5b^4}{4c^4+5d^4}\left(đpcm\right)\)

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

29 tháng 11 2019

Các bạn giúp mình nhé ! Mình đang cần gấp

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)

Mà a+b+c+d khác 0

=> b+c+d = a+c+d = b+a+d = c+b+a

=> b = a = c = d

Ta có:

\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)

\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)

\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)

\(P=1-1-1-1=-2\)

6 tháng 7 2019

Tạm thời giải phần a đã nhé -_-

a, Từ a/b = c/d => a/c=b/d

Đặt a/c=b/d=k thì a=ck, b=dk

Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d

=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d

Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@

6 tháng 7 2019

\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)

\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)

Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)

Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)

TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)

12 tháng 8 2016

ban chi can dat 2 phan so bang nhau la K roi thay so vo la duoc

12 tháng 8 2016

nhưng mình ko biết nên mới phải gửi lên đây

18 tháng 11 2018

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}=\frac{7a^2+3ab}{7b^2+3cd}=\frac{11a^2-5b^2}{11c^2-5d^2}\)

\(\Rightarrow\frac{7a^2+3ab}{11a^2-5b^2}=\frac{7c^2+3cd}{11c^2-5d^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4\)(1)

\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)(2)

từ (1) và (2) => đpcm

c) áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)

\(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)(2)

từ (1) và (2) => đpcm

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT:  \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.Bài 5: Cho...
Đọc tiếp

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 

Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  

Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)

Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT: 

 \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.

Bài 5: Cho TLT \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)  với a,b,c \(\ne\)0; a \(\ne\)c. CMR: \(\frac{ab}{bc}=\frac{b}{c}\)

Bài 6: Tìm các số x,y,z biết:

a, \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\)   và x + y - 10z = – 102

b, 9x = 5y = 15z và –x + y - z = 11

c, \(\frac{3}{7}x=\frac{8}{13}y=\frac{6}{19}z\) và 2x - y - z = – 6

Bài 8: Cho TLT . Chứng minh:

a, \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)            b, \(\frac{a-b}{c-d}=\frac{2a-3b}{2c-3d}\)                     c, \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

2
11 tháng 10 2018

2. \(\frac{\left(3X+5Y\right)}{X-2Y}=\frac{1}{4}=>4\left(3X+5Y\right)=X-2Y\\ 12X+20Y=X-2Y\\ X-12X=2Y-20Y\\ -11X=-18Y\\ =>\frac{X}{Y}=-\frac{18}{-11}=\frac{18}{11}\)

11 tháng 10 2018

Bài 1. 4/25 = 100/x => x = 25.100/4 = 2500/4 = 625

Bài 3. (a-3)/(a+3) = (b-6)/(b+6)

=> (a-3)(b+6) = (a+3)(b-6)

=> ab + 6a -3b -18 = ab - 6a + 3b -18

=> 12a = 6b

=> a/b = 6/12 = 1/2