Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
19.
\(\overline{z}=1-3i\)
\(\Rightarrow u=\left(1-3i\right)\left(2-i\right)=2+3i^2-7i=-1-7i\)
Phần ảo bằng -7
20.
Tọa độ G: \(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}=2\\y_G=\frac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)
Biểu diễn trên mặt phẳng phức: \(z=2+i\)
21.
Đề đúng là \(\left(1-i\right)+44\overline{z}=7-7i\) chứ?
\(\Rightarrow44\overline{z}=6-6i\Rightarrow\overline{z}=\frac{3}{22}-\frac{3}{22}i\)
\(\Rightarrow z=\frac{3}{22}+\frac{3}{22}i\Rightarrow\left|z\right|=\sqrt{\left(\frac{3}{22}\right)^2+\left(\frac{3}{22}\right)^2}=\frac{3\sqrt{2}}{22}\)
15.
Diện tích thiết diện:
\(S=\frac{1}{2}\left(2\sqrt{1-x^2}\right)^2=2\left(1-x^2\right)=2-2x^2\)
Thể tích:
\(S=\int\limits^1_{-1}\left(2-2x^2\right)dx=\frac{8}{3}\)
16.
\(z=z'\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) (phần thực bằng phần thực, phần ảo bằng phần ảo)
17.
\(\overline{z}=3+2i\Rightarrow\) phần ảo là 2 (không phải 2i đâu)
18.
\(z=3+2i\Rightarrow z^2=\left(3+2i\right)^2=9+4i^2+12i=5+12i\)
\(\Rightarrow\) phần thực bằng 5
a) Khi a = 0 ta có hàm số: y=−13x3−x2+3x−4y=−13x3−x2+3x−4
- Tập xác định : (-∞, +∞)
- Sự biến thiên: y’= -x2 – 2x + 3
y’=0 ⇔ x = 1, x = -3
Trên các khoảng (-∞, -3) và (1, +∞), y’ < 0 nên hàm số nghịch biến.
Trên khoảng (-3, 1), y’ > 0
_ Cực trị:
Hàm số đạt cực đại tại x = 1, yCD=−73yCD=−73
Hàm số đạt cực tiểu tại x = -3, yCT=−13yCT=−13
_ giới hạn vô cực : limx→+∞=−∞,limx→−∞=+∞limx→+∞=−∞,limx→−∞=+∞
Bảng biến thiên:
Đồ thị hàm số:
Đồ thị cắt trục tung tại y = -4
Đồ thị cắt trục hoành tại x ≈ 5, 18
b) Hàm số y=−13x3−x2+3x−4y=−13x3−x2+3x−4 đồng biến trên khoảng (-3, 1) nên:
y < y(1) = −73−73 < 0, ∀x ∈ (-1, 1)
Do đó , diện tích cần tính là:
∫1−1(−13x3−x2+3x−4)dx=263
Xem thêm tại: http://loigiaihay.com/cau-2-trang-145-sgk-giai-tich-12-c47a26419.html#ixzz4czxQ4IGx