K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

9 tháng 10 2015

ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên

suy ra (x-2) là ước của 9

mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)

TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2

th2: x-2=9 suy ra x=11 suy ra y=3+1=4

th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0

th4: x-2=3 suy ra x=5 suy ra y=3+3=6

th5:x-2=1 suy ra x=3 suy ra y=3+9=12

th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6

kết luận....

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

29 tháng 4 2019

Đây mà là Tiếng Việt lớp 1 ah?

29 tháng 4 2019

Ơ ?? thế cuối cùng m lớp mấy thế ?

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn