K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

21 tháng 10 2015

A,B là 2 nguồn cùng pha nên đường trung trực của AB dao động cực đại.

Giữa M và đường trung trực của AB có 3 dãy dực đại khác => M nằm trên dãy cực đại k = 4

\(d_2-d_1=(k+\frac{\triangle\varphi}{2\pi})\lambda = (4+0)\lambda \Rightarrow \lambda = \frac{d_2-d_1}{4}=\frac{21-19}{4}=0.5cm \Rightarrow v = f.\lambda = 80.0,5=40cm/s.\)

 

 

2 tháng 5 2017

cho mình hỏi nếu có hai dãy cực đại thì k=1 à

O
ongtho
Giáo viên
23 tháng 10 2015

Hướng dẫn giải: 

Tại P dao động mạnh nhất khi  \(d_{2}-d_{1}=(k+\frac{\triangle \phi}{2\pi})\lambda.\)

Tại P dao động cực tiểu khi  \(d_{2}-d_{1}=(2k+1+\frac{\triangle \phi}{\pi})\frac{\lambda}{2}.\)

\(\triangle \phi = \pi\)

\(\lambda = \frac{v}{f}=\frac{80}{20}=4cm.\) Tại N: \(d_{2N}-d_{1N}=61-33=28=9.2\) => N đứng yên.

                                   Tại M:  \(d_{2M}-d_{1M}=9.25-3.25=6=(1+\frac{1}{2}).4\)=> tại M dao động cực đại.

11 tháng 6 2019

17 tháng 12 2016

a)\(U_M=2Acos\left(\pi\frac{\left(d_2-d_1\right)}{\lambda}\right)\) \(cos\left(\omega t-\pi\frac{d_1+d_2}{\lambda}\right)\)

thay số vào ta đc

\(U_M=\frac{\sqrt{2}}{2}cós\left(20\pi t-\frac{29\pi}{4}\right)\)

b) số cực đại \(\frac{-AB}{\lambda}\le n\le\frac{AB}{\lambda}\)

nên \(-2,75\le n\le2,75\)

có 5 giá trị n nguyên, vậy số cực đại là 5

số cực tiểu \(\frac{-AB}{\lambda}-\frac{1}{2}\le n\le\frac{AB}{2}-\frac{1}{2}\)

thay số tương tự nhé

 

17 tháng 12 2016

ừ thì bước sóng bằng 8cm đúng rồi

còn d2 với d1 thì k quan trọng đâu, lấy cái nào trừ cái nào cũng đc

 

27 tháng 6 2016

27.68822484 mm

27 tháng 6 2016

bạn ơi giải chi tiết hộ mình được không ??

11 tháng 9 2015

 \(\lambda = v/f = 80/20 = 4cm.\)

\(\triangle \varphi = \pi-0=\pi.\)

Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)

23 tháng 4 2017

A