K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

7 x - 6 x 2 - 2 = 4 x - 6 x 2 - 2 + 3 x = 4 x - 6 x 2 - 2 - 3 x = 2 x 2 - 3 x - 2 - 3 x = 2 x - 1 2 - 3 x

6 tháng 11 2016

Ta có:

\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)

\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)

\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)

4 tháng 10 2018

xin chào làm ơn đừng trách mk mk sẽ nói cách giải

a) => 4x2y2 - (4x2.2) yz + 4x2z2

=> 4x2.(y2+yz+z2 - 2)

chắc sai!! 45454655474675675685685787686845765756856876

13 tháng 7 2016

a) \(4x^2y^2-8x^2yz+4x^2z^2\)

\(=\left(2xy\right)^2-2.2xy.2xz+\left(2xz\right)^2\)

\(=\left(2xy-2xz\right)^2\)

\(=4x^2\left(y-z\right)^2\)

b) \(x^8+x^7+x^6+x^5+x^3\)

\(=x^3\left(x^5+x^4+x^3+x^2+1\right)\)( có lẽ vậy )

2 tháng 10 2019

b, x^6+27=x^2*3+3^3

                 =(x^2+3)(x^4-3x^2+9)

hok tốt

2 tháng 10 2019

a, x^2 + 2xy + y^2 - x - y - 12

= (x^2 + 2xy + y^2) - (x + y) - 16 + 4

= (x + y)^2 - 4^2 - (x + y - 4)

= (x + y - 4)(x + y + 4) - (x + y - 4)

= (x + y - 4)(x + y + 4 - 1)

= (x + y - 4)(x + y + 3)

b, x^6 + 27

= (x^2)^3 + 3^3

= (x^2 + 3)[(x^2)^2 - 3x^2 + 3^2]

= (x^2 + 3)(x^4 - 3x^2 + 9)

c, x^7 + x^5 + 1

=x^7 - x^6 + x^5 - x^3 + x^2 + x^6 - x^5 + x^4 - x^2 + x + x^5 - x^4 + x^3 - x + 1
= (x^2 + x + 1)(x^5 - x^4 + x^3 - x+1)

30 tháng 10 2019

Diệu Linh_face

\(6x^2+x-2\)

\(=6x^2-3x+4x-2\)

\(=3x\left(2x-1\right)+2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(3x+2\right)\)

30 tháng 10 2019

thak nha

8 tháng 7 2017

\(\left(x^2+x\right)^2-\left(x^2+x\right)-6=x^4+2x^3+x^2-x^2-x-6\)

\(=x^4+2x^3-x-6\)

\(=x^4+x^3+2x^2+x^3 +x^2+2x-3x^2-3x-6\)

\(=\left(x^4+x^3+2x^2\right)+\left(x^3+x^2+2x\right)-\left(3x^2+3x+6\right)\)

\(=x^2\left(x^2+x+2\right)+x\left(x^2+x+2\right)-3\left(x^2+x+2\right)\)

\(=\left(x^2+x+2\right)\left(x^2+x-3\right)\)

4 tháng 7 2016

a) 3x(x+7)^2  -  11x^2 (x+7)

= (x+7) [3x(x+7) -11x^2]

= (x+7) (3x^2  -11x^2 +21x)

= (x+7) [(3x-11x)(3x+11x) + 21x]

= (x+7) [(-8)x * 14x + 21x]

= (x+7) (-112x^2 + 21x)

= (x+7) * (21-112)x

13 tháng 8 2016

\(x^7+x^2+1\)

\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

 

13 tháng 8 2016

\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left[\left(x^3\right)^2-1^2\right]+\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[x^2\left(x^3+1\right)-x\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5+x^2-x^4-x+1\right)\)

28 tháng 12 2019

\(x^7+x^2+1\)

\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

28 tháng 12 2019

a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

25 tháng 8 2017

x6+x4+x2y2+y4-y6=(x6-y6)+(x4+x2y2+y4)=(x2-y2)(x4+x2y2+y4)+(x4+x2y2+y4)=(x4+x2y2+y4)(x2-y2+1)=((x2+y2)2-x2y2)(x2-y2+1)

                          =(x2+xy+y2)(x2-xy+y2)(x2-y2+1)

x4-30x2+31x-30=(x4+x)-(30x2-30x+30)=x(x+1)(x2-x+1)-30(x2-x+1)=(x2-x+1)(x2+x-30)=(x2-x+1)(x-5)(x+6)