Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
a) \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)
= \(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\) #áp dụng hàng đẳng thức#
c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc
b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)
=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)
= \(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)
=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)
Rút gọn thôi chứ phân tích sao được ._.
( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )
= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )
= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18
= -30x2 - 52x - 7
Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))
Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)
\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)
\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)
\(=\left(4x+7\right)\left(12x+17\right)\)
a/\(\left(x^2-x\right)^2+4\left(x^2-x\right)-12.\)
cho \(\left(x^2-x\right)=a\)
\(\Rightarrow a^2+4a-12\)
\(=a^2+6a-2a-12\)
\(=\left(a^2+6a\right)-\left(2a+12\right)\)
\(=a\left(a+6\right)-2\left(a+6\right)\)
\(=\left(a+6\right)\left(a-2\right)\)
\(=\left(x^2-x+6\right)\left(x^2-x-2\right)\)
b/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Gọi \(x^2+5x+5=a\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-1-24\)
\(=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
\(\Rightarrow\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
Phân tích đa thức thành nhân tử
(x+3)(x−6)+x2−9
Tk nha !
\(\left(x+3\right)\left(x-6\right)+x^2-9\)
\(=x^2-3x-18+x^2-9\)
\(=2x^2-3x-27\)
\(=\left(2x^2+6x\right)-\left(9x+27\right)\)
\(=\left(x+3\right)\left(2x-9\right)\)
Ta có:
\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)
\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)
\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)
xin chào làm ơn đừng trách mk mk sẽ nói cách giải