K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

x6+x4+x2y2+y4-y6=(x6-y6)+(x4+x2y2+y4)=(x2-y2)(x4+x2y2+y4)+(x4+x2y2+y4)=(x4+x2y2+y4)(x2-y2+1)=((x2+y2)2-x2y2)(x2-y2+1)

                          =(x2+xy+y2)(x2-xy+y2)(x2-y2+1)

x4-30x2+31x-30=(x4+x)-(30x2-30x+30)=x(x+1)(x2-x+1)-30(x2-x+1)=(x2-x+1)(x2+x-30)=(x2-x+1)(x-5)(x+6)

25 tháng 8 2017

... = x^4 + 6x^3 - 6x^3 -36x^2 +6x^2 + 36x -5x -30 = x^3 ( x+6) - 6x^2(x+6) +6x(x+6) -5( x+6)= (x+6)(x^3-6x^2 +6x-5)

=   (x+6)(x^3 -5x^2 - x^2 + 5x + x -5 )=  (x+6)[(x^2(x-5) - x(x-5) + (x-5)] = (x+6)(x-5)(x^2 -x +1)

3 tháng 7 2018

Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ

Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-1\right)-12\)

Đặt: \(x+y=t\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12\)

\(=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))

Câu d) Đặt biến phụ

Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)

\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)

\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)

Đặt \(t=5x^2-2x\)

\(=t\left(t-1\right)-6\)

\(=t^2-t-6\)

\(=t^2-t-9+3\)

\(=\left(t^2-3^2\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào 

3 tháng 7 2018

Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức

Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)

Đặt: \(t=2x^2+x-2\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)

Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)

Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ 

Ta có: \(x^2+9y^2-9y-3x+6xy+2\)

\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)

\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)

\(=\left(x+3y\right)\left(x+3y-3\right)+2\)

Đặt \(t=x+3y\)

\(=t\left(t-3\right)+2\)

\(=t^2-3t+2\)

\(=\left(t^2-4\right)-\left(3t-6\right)\)

\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)

\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào

Còn mấy bài sau đang nghiên cứu

1: \(x^4-4+2x^3-4x\)

\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

4: \(-6x^3+18x^2+60x\)

\(=-6x\left(x^2-3x-10\right)\)

\(=-6x\left(x-5\right)\left(x+2\right)\)

6: \(x^4+x^3-5x^2-5x\)

\(=x\left(x^3+x^2-5x-5\right)\)

\(=x\left(x+1\right)\left(x^2-5\right)\)

22 tháng 10 2016

a) \(g\left(x,y\right)=x^2-10xy+9y^2=x^2-xy-9xy+9y^2\)

\(=x\left(x-y\right)-9y\left(x-y\right)=\left(x-y\right)\left(x-9y\right)\).

 

22 tháng 10 2016

b )\(f\left(x,y\right)=x^6+x^4+x^2y^2+y^4-y^6\)

\(=x^6-y^6+x^4+x^2y^2+y^4\)

\(=\left(x^3\right)^2-\left(y^3\right)^2+\left(x^4+2x^2y^2+y^4\right)-x^2y^2\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)+\left(x^2+y^2\right)^2-\left(xy\right)^2\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)

\(=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left[\left(x-y\right)\left(x+y\right)+1\right]\)

\(=\left(x^2+xy+y^2\right)\left(x^2-2y+y^2\right)\left(x^2-y^2+1\right)\)

Vậy \(f\left(x,y\right)=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left(x^2-y^2+1\right)\)

 

 

 

17 tháng 9 2016

a)x6-y6+

=[(x2)3-(y2)3]+(x4+x2y2+y4)

=[(x2-y2)(x4+x2y2+y4)]+(x4+x2y2+y4)

=(x4+x2y2+y4)[(x2-y2)+1]

=(x2-xy+y2)(x2+xy+y2)(x2-y2+1)

19 tháng 10 2018

\(x^4+x^2y^2+y^2\)

\(=x^4+2x^2y^2-x^2y^2+y^2\)

\(=\left(x^4+2x^2y^2+y^2\right)-x^2y^2\)

\(=\left(x^2+y\right)^2-x^2y^2\)

\(=\left(x^2+y-x^2y^2\right)\left(x^2+y+x^2y^2\right)\)