K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

1.x2-9

= (x-3)(x+3)

2. -2x2+2x+12

= -2x2+6x-4x+12

= -2x(x+2)+6(x+2)

= (x+2)(-2x+6)

4. -2x2+2x+24

= -2x2+8x-6x+24

= -2x(x+3)+8(x+3)

= (x+3)(-2x+8)

6. x2-5x+4

= x2-4x-x+4

= x(x-1) -4(x-1)

= (x-1)(x-4)

8. x2-7x+6

= x2-6x-x+6

= x(x-1)-6(x-1)

= (x-1)(x-6)

9. x2+5x+4

= x2+4x+x+4

= x(x+1)+4(x+1)

=(x+1)(x+4)

10. x2+7x+6

= x2 +x+6x+6

= x(x+1)+6(x+1)

= (x+6)(x+1)

K nhé

25 tháng 10 2016

Cảm ơn nhìu

a)Đặt \(A=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2+\dfrac{3}{2}x-1\)

\(A=\dfrac{1}{8}\left(x^3-6x^2+12x-8\right)\)

\(A=\dfrac{1}{8}\left(x-2\right)^3\)

8 tháng 5 2018

b,\(x^4+2015x^2+2014x+2015=x^4+2015x^2+2015x-x+2015=x\left(x^3-1\right)+2015\left(X^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)

17 tháng 3 2018

c)\(x^4+4y^4=x^4+4x^2y^2+4y^4-4x^2y^2=\left(x^2+2y^2\right)^2-4x^2y^2=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

d)\(x^4+3x^2+4=x^4+4x^2+4-x^2=\left(x^2+2\right)^2-x^2=\left(x^2+2-x\right)\left(x^2+x+2\right)\)

17 tháng 3 2018

c.

\(x^4+4y^4\)

\(=\left(x^2\right)^2+\left(2y^2\right)^2+4x^2y^2-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

1 tháng 1 2019

x4-30x2+31x-30

=x4-30x2+30x+x-30

=(x4+x)-(30x2-30x+30)

=x(x3+1)-30(x2-x+1)

=x(x+1)(x2-x+1)-30(x2-x+1)

=(x2+x)(x2-x+1)-30(x2-x+1)

=(x2-x+1)(x2+x-30)

1: \(x^4-4+2x^3-4x\)

\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

4: \(-6x^3+18x^2+60x\)

\(=-6x\left(x^2-3x-10\right)\)

\(=-6x\left(x-5\right)\left(x+2\right)\)

6: \(x^4+x^3-5x^2-5x\)

\(=x\left(x^3+x^2-5x-5\right)\)

\(=x\left(x+1\right)\left(x^2-5\right)\)

7 tháng 1 2018

\(x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)

\(=\left(x-y+2\right)^2-9\)

\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

7 tháng 1 2018

a, = (x^2-2xy+y^2)+(4x-4y)-5

    = (x-y)^2+4.(x-y)-5

    = [(x-y)^2+4.(x-y)+4]-9

    = (x-y+2)^2-9

    = (x-y+2-3).(x-y+2+3)

    = (x-y-1).(x-y+5)

b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2

Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Vậy A chia hết cho 2 với mọi n thuộc N sao

Mà n thuộc N sao nên n.(n^2+1)+2 > 2

=> A là hợp số hay n^3+n+2 là hợp số

=> ĐPCM

Tk mk nha

a)\(\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)

b)\(x\left(y+1\right)+\left(y+1\right)=\left(y+1\right)\left(x+1\right)\)

c)\(\left(x+y\right)^2-2\left(x+y\right)=\left(x+y\right)\left(x+y-2\right)\)

17 tháng 9 2015

b) xy+1+x+y = x(y+1)+1+y = (x+1).(y+1)