Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách thứ 2 mới đúng em nhé.
Cách 1 chỉ đúng khi dây kim loại chuyển động tịnh tiến, nhưng ở đây là dây kim loại quay quanh 1 đầu cố định.
Mình giải thích thêm về công thức trên như sau.
Ta có suất điện đọng tính bởi :
\(e=\dfrac{\Delta\phi}{\Delta t}=\dfrac{B.\Delta S}{\Delta t}=\dfrac{B.\Delta (\dfrac{\alpha}{2\pi}.\pi^2.l )}{\Delta t}=\dfrac{B.\Delta\alpha.l^{2}}{2.\Delta t}=\dfrac{B.l^{2}\omega}{2}\)
Với \(\Delta \alpha\) là góc quay trong thời gian \(\Delta t\) \(\Rightarrow \omega = \dfrac{\Delta \alpha}{\Delta t}\)
\(e_{max}\) khi \(\omega_{max}\), với \(\omega_{max}=\dfrac{v_{max}}{R}=\dfrac{\sqrt{2gl(1-\cos\alpha)}}{l}\)
Thay vào trên ta tìm đc \(e_{max}\)
- Góc lệch của dây treo VTCB:
Gia tốc trong trường biểu kiến:
- Khi kéo lệch khỏi VTCB một góc 54° so với phương thẳng đứng thì α = 9° (góc lệch dây treo tại VTCB mới)
Đáp án A
Góc lệch của dây treo VTCB :
Gia tốc trong trường biểu kiến
Khi kéo lệch khỏi VTCB một góc 54 ° so với phương thẳng đứng thì
(góc lệch dây treo tại VTCB mới)
Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)
Ta có