K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Giả sử phương trình đã cho có 2 nghiệm  x 1  và  x 2 , theo hệ thức Vi-ét ta có:

x 1  +  x 2  = -b/a = -[-2(m + 1)]/1 = 2(m + 1)/1 = 2(m + 1)

x 1 x 2  = c/a = ( m 2  + m - 1)/1 =  m 2  + m – 1

x 1 2 + x 2 2  =  x 1 + x 2 2  – 2 x 1 x 2  = 2 m + 2 2  – 2( m 2  + m – 1)

= 4 m 2  + 8m + 4 – 2 m 2  – 2m + 2 = 2 m 2  + 6m + 6

8 tháng 5 2017

a; \(\Delta\)' = \([\) -(m+1)\(]\) 2-1.(m2+m-1)

\(\Leftrightarrow\) m2 + 2m +1- m2- m + 1 \(\Leftrightarrow\) m + 2

phương trình có 2 nghiệm \(\Leftrightarrow\Delta\) > 0

\(\Leftrightarrow\) m + 2 > 0 \(\Leftrightarrow\) m > -2

vậy m > -2 thì phương trình có 2 nghiệm

8 tháng 5 2017

b; x1 + x2 = \(\dfrac{-b}{a}\) = 2.(m + 1) = 2m + 2 (1)

x1 . x2 = \(\dfrac{c}{a}\) = m2 + m - 1 (2)

x12 + x22 = (x1 + x2)2 - 2x1.x2 (3)

thay (1) ; (2) vào (3)

\(\Leftrightarrow\) (2m + 2)2 - 2.(m2 + m - 1)

= 4m2+ 8m + 4 - 2m2- 2m + 2 = 2m2 + 6m + 6

16 tháng 5 2017

a/ Chứng mính 2 nghiệm phân biệt thì \(\Delta>0\)

b/ Dùng định lí vi-ét là ra nha bạn

Nhiều thế, chắc phải đưa ra đáp thôi

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4