K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

\(B-1=\frac{2015^{2014}+1}{2015^{2013}+1}-1=\frac{2015^{2015}+2015}{2015^{2014}+2015}-1=\frac{2015^{2015}-2015^{2014}}{2015^{2014}+2015}\)

\(A-1=\frac{2015^{2015}+1}{2015^{2014}+1}-1=\frac{2015^{ }^{2015}-2015^{2014}}{2015^{2014}+1}\)

=> A- 1 > B- 1 => A>B

Câu b) Làm tương tự bạn nhé

5 tháng 5 2016

http://olm.vn/hoi-dap/question/575209.html Bạn tham khảo cách làm của mình ở đây.

5 tháng 5 2016

Ê bạn sai đề bài rồi đấy...

17 tháng 7 2017

Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)

\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)

\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)

\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)

Mà \(\frac{2016}{2017}< 1\)

Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)

17 tháng 7 2017

dấu cần điền là : > 

Vì kết quả của phép tính vế thứ 1 là 1 

và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn

5 tháng 4 2016

ta có : ( 1 - 1/2010) ( 1 - 2/2010) ...( 1 - 2010/2010)...(1 - 2016/2010) =  ( 1 - 1/2010) x  ( 1 - 2/2010) x...x ( 1 - 1 ) x ...x(1 - 2016/2010)

                                                                                                   =( 1 - 1/2010) x  ( 1 - 2/2010) x...x 0 x ...x(1 - 2016/2010)

mà mọi số nhân 0 đều bằng 0 nên kết quả bầng 0

22 tháng 4 2017

A=(1-1/2010).(1-1/2010).....(1-2011/2010)

A=1*(1/2010-2/2010-3/2010-...-2011/2010)

A=1/2010-2/2010-3/2010-...-2011/2010

rồi bạn bấm tiếp theo nha

6 tháng 5 2017

Ta có:

\(A=\frac{2010^{2011}+1}{2010^{2012}+1}\)

\(2010A=\frac{2010^{2012}+2010}{2010^{2012}+1}\)

\(2010A=1+\frac{2009}{2010^{2012}+1}\)

Lại có:

\(B=\frac{2010^{2010}+1}{2010^{2011}+1}\)

\(2010B=\frac{2010^{2011}+2010}{2010^{2011}+1}\)

\(2010B=1+\frac{2009}{2010^{2011}+1}\)

Vì \(1+\frac{2009}{2010^{2012}+1}< 1+\frac{2009}{2010^{2011}+1}\)

nên 2010A < 2010B

hay A < B

Vậy A < B

10 tháng 5 2015

A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)\(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)\(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)

B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)\(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)\(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)

Do \(\frac{1}{9^{2010}}<\frac{1}{5^{2010}}\) ; \(\frac{1}{9^{2009}}<\frac{1}{5^{2009}}\) ;.....; \(\frac{1}{9}<\frac{1}{5}\) 

=> \(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}<\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\)

=> 1:\(\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}\right)>1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)

Vậy A > B

10 tháng 5 2015

có đúng đề không vậy 

 

 

 

 

 

31 tháng 8 2015

Ta có:

2010.A=\(\frac{2010^{2012}+2010}{2010^{2012}+1}\)

2010.B=\(\frac{2010^{2011}+2010}{2010^{2011}+1}\)

2010.A có phần thừa với 1 là:\(\frac{2009}{2010^{2012}+1}\)

2010.B có phần thừa với 1 là:\(\frac{2009}{2010^{2011}+1}\)

Vì \(\frac{2009}{2010^{2012}+1}<\frac{2009}{2010^{2011}+1}\)

=>2010.A<2010.B

=>A<B