K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)

\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)

Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)

b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)

15 tháng 11 2018

\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x-2}{x^2+x+1}\)

22 tháng 10 2020

Bài làm

a) 2(x + y)3 + 2(x - y)3 

= 2[(x + y)3 + (x - y)3]

= 2[x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3]

= 2[(x3 + x3) + (3x2y - 3x2y) + (3xy2 + 3xy2) + (y3 - y3)]

= 2[2x3 + 6xy2]

= 4x3 + 12xy2

b)uhm... Mình sửa đề chút, thay vì là -3(x + y)2(x - y) thì mình sẽ thành +3(x + y)2(x - y)

(x - y)3 - (x + y)3 + 3(x + y)2(x - y) - 3(x + y)(x - y)2

= -[(x + y)3 - 3(x + y)2(x - y) + 3(x + y)(x - y)2 - (x - y)3]

= -[(x + y) - (x - y)]3 

= -[x + y - x + y ]3

= -[y]3 

= -y

21 tháng 7 2017

b) Ta có nhận xét này nếu a+b+c=0 thì\(a^3+b^3+c^3=3abc\) (nếu cần chứng minh thì hỏi sau nhé)

Khi đó: tử=(x-y)(y-z)(z-x)

Mẫu nó cứ thế nào ấy. Rút gọn cũng chỉ được một chút thôi, chẳng gọn lắm

a) chịu chưa nghĩ ra

1 tháng 12 2017

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

22 tháng 10 2021

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

3 tháng 12 2016

A) X4 - y4 / y3 -x3 = (x2) 2 - (y2 )2 / (y-x)(y^2+xy+x^2)= (x^2-y^2)(x^2+y^2) / (y-x)(y^2+xy+x^2)=-(x-y)(x+y)(x^2+y^2) / (x-y)(x^2+xy+y^2)= - (x+y)(x^2+y^2) / x^2 + xy + y^2

 

 

3 tháng 12 2016

Câu b, bạn nhóm các hạng tử vào vs nhau sẽ xuất hiện nhân tử chung rồi rút gọn đi là ok. Nhóm 2x^3 vs -2x, x^2 vs cộng 1 thì đặt dấu trừ ra ngoài.. Bên dưới nhóm x^3 vs -x,2x^2 vs -2