K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b, x^3 + 12x^2 + 48x + 64
= x^3 + 3.x.4.(x + 4) + 4^3
= (x + 4)^3

nha bạn 

chúc bạn học tốt ạ 

x3 - 12x2 + 48x - 64 

= x3 - 3.x2.4 + 3.x.42 +43 

= ( x - 4 )3 

Hok tốt!!!!!!!!!

26 tháng 6 2016

a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)

b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)

c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)

d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.

21 tháng 8 2015

 

a) ( 4x+1) (12x-1) (3x+2) (x+1) -4

=(4x+1)(3x+2)(12x-1)(x+1)-4

=(12x2+11x+2)(12x2+11x-1)-4

Đặt t=12x2+11x+2 ta được:

t.(t-3)-4

=t2-3t-4

=t2+t-4t-4

=t.(t+1)-4.(t+1)

=(t+1)(t-4)

thay t=12x2+11x+2 ta được:

(12x2+11x+3)(12x2+11x-2)

Vậy ( 4x+1) (12x-1) (3x+2) (x+1) -4=(12x2+11x+3)(12x2+11x-2)

b) (x2+2x)2+9x2+18x+20

=(x2+2x)2+9.(x2+2x)+20

Đặt y=x2+2x ta được:

y2+9y+20

=y2+4y+5y+20

=y.(y+4)+5.(y+4)

=(y+4)(y+5)

thay y=x2+2x ta được:

(x2+2x+4)(x2+2x+5)

Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)

 

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

1.

$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$

2.

a)

$x^3-9x^2+27x-27=-8$

$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$

$\Leftrightarrow (x-3)^3=-8=(-2)^3$

$\Rightarrow x-3=-2$

$\Leftrightarrow x=1$

b)

$64x^3+48x^2+12x+1=27$

$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$

$\Leftrightarrow (4x+1)^3=3^3$

$\Rightarrow 4x+1=3$

$\Leftrightarrow x=\frac{1}{2}$

28 tháng 7 2019

a) x3 - 9x2 + 27x - 27 = -8

<=> x3 - 3x2.3 + 3x.32 - 33 = -8

<=> (x - 3)3 = -23

<=> x - 3 = -2

<=> x = 1 (T/m)

Vậy x = 1.

28 tháng 7 2019

b) 64x3 + 48x2 + 12x + 1 = 27

<=> (4x)3 + 3.(4x)2.1 + 3.4x.12 + 13 = 27

<=> (4x + 1)3 = 33

<=> 4x + 1 = 3

<=> 4x = 2

<=> x = \(\frac{1}{2}\)(T/m)

Vậy x = \(\frac{1}{2}\).