K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

b/ $x^2-4x+20=0$

$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)

Do đó pt vô nghiệm.

c/ $2x^3-3x+1=0$

$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$

$\Leftrightarrow (x-1)(2x^2+2x-1)=0$

$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$

 

1 một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc được xác định bởi công thức a(t)=2t+t^2(m/s^2). Tính quãng đường của vật đi được sau 9 giây kể từ lúc bắt đầu tăng tốc 2 kí hiệu z1,z2,z3,z4 là bốn nghiệm phức của phuong trình\(z^4+7z^2+12=0\). Tính tổngT z\(z^4_1+z_2^4+z_3^4+z^4_4\) 3 biết \(\int_3^7\) f(x)dx=4. Tính E=\(\int_3^7\) [f(x)+1]dx 4 gọi H là hình phẳng được giới hạn...
Đọc tiếp

1 một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc được xác định bởi công thức a(t)=2t+t^2(m/s^2). Tính quãng đường của vật đi được sau 9 giây kể từ lúc bắt đầu tăng tốc

2 kí hiệu z1,z2,z3,z4 là bốn nghiệm phức của phuong trình\(z^4+7z^2+12=0\). Tính tổngT z\(z^4_1+z_2^4+z_3^4+z^4_4\)

3 biết \(\int_3^7\) f(x)dx=4. Tính E=\(\int_3^7\) [f(x)+1]dx

4 gọi H là hình phẳng được giới hạn bỏi đồ thị hàm số y=(1+\(e^{^x}\) )x và y=(1+e)x. Diện tích của (H) bằng

A \(\frac{e-1}{2}\) B\(\frac{e-2}{2}\) C\(\frac{e+2}{2}\) D \(\frac{e+1}{2}\)

5 trong ko gian oxyz, viết pt mặt cầu đi qua bốn điểm O, A(1;0;0),B(0;-2;0) ,C(0;0;4)

6 trong ko gian oxyz cho đương thẳng d \(\left\{{}\begin{matrix}x=1+2t\\y=-t\\z=1-3t\end{matrix}\right.\) ,t\(\in R\) . Một vecto chỉ phuong của đường thẳng d là

A \(\overline{u}\left(2;-1;3\right)\) B \(\overline{u}\left(2;-1;-3\right)\) C \(\overline{u}\left(1;0;1\right)\) D \(\overline{u}\left(-2;-1;3\right)\)

7 trong ko gian oxyz, cho điểm A(4;-3;2).Tìm tọa độ \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d: \(\frac{x+2}{3}=\frac{y+2}{2}=\frac{z}{-1}\)

8 trong ko gian oxyz , cho điểm A(5;2;-3).Tọa độ điểm H là hình chiều vuông góc của điểm A rên Oy là

3
NV
30 tháng 5 2020

6.

d nhận \(\left(2;-1;-3\right)\) là 1 vtcp

7.

Phương trình mặt phẳng (P) qua A và vuông góc d nhận \(\left(3;2;-1\right)\) là 1 vtpt có dạng:

\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x+2y-z-4=0\)

Pt tham số d: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

A' là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)

\(\Rightarrow A'\left(1;0;-1\right)\)

8.

Tọa độ H là \(H\left(0;2;0\right)\) (giữ tung độ, thay hoành độ và cao độ bằng 0 là xong)

NV
30 tháng 5 2020

4.

\(\left(1+e^x\right)x=\left(1+e\right)x\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Diện tích:

\(S=\int\limits^1_0\left[\left(1+e\right)x-\left(1+e^x\right)x\right]dx\)

\(=\int\limits^1_0e.xdx-\int\limits^1_0x.e^xdx\)

\(=\left(\frac{1}{2}e.x^2-\left(x-1\right)e^x\right)|^1_0=\frac{e}{2}-1=\frac{e-2}{2}\)

5.

Do 3 điểm A;B;C lần lượt thuộc 3 trục tọa độ nên mặt cầu đi qua 4 điểm có tâm \(I\left(\frac{1}{2};-1;2\right)\)

\(R=IA=\sqrt{\left(\frac{1}{2}\right)^2+\left(-1\right)^2+2^2}=\frac{\sqrt{21}}{2}\)

Phương trình:

\(\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=\frac{21}{4}\)

mk nhầm câu c là 25f(x)

câu d là 24f(x)

mk nhầm nũa câu hỏi là cái f(x+2)-f(x) là bỏ nha

1 một chất điểm chuyển động có pt chuyển động là s= \(-t^3+6t^2+17t\) , với t(s) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(m) là quãng đường vật đi dc trong khoảng thời gian đó. Trong khoảng thời gian 8 giây đầu tiên, vận tốc v(m/s) của chất điểm đạt giá trị lớn nhất là bao nhiêu 2 cho hình chóp S.ABCD có đáy là hình thang vuông tại A,B .Biết SA vuông góc với ABCD ,...
Đọc tiếp

1 một chất điểm chuyển động có pt chuyển động là s= \(-t^3+6t^2+17t\) , với t(s) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(m) là quãng đường vật đi dc trong khoảng thời gian đó. Trong khoảng thời gian 8 giây đầu tiên, vận tốc v(m/s) của chất điểm đạt giá trị lớn nhất là bao nhiêu

2 cho hình chóp S.ABCD có đáy là hình thang vuông tại A,B .Biết SA vuông góc với ABCD , AB=BC=a , AD=2a , SA= \(a\sqrt{2}\)

. Gọi E là trung điểm của AD.Tính bán kính mặt cầu đi qua các điểm S,A,B,C,E là

3 Cho các số thực dương x,y . Tìm giá trị lớn nhất của biểu thức P =\(\frac{4xy^2}{\left(x+\sqrt{x^2+4y^2}\right)^3}\)

4 Gọi S là tập hợp các giá trị của tham số m để hàm số \(y=\frac{1}{3}x^3+\left(m+1\right)x^2+4x+7\) nghịch biến trên một đoạn có độ dài bằng \(2\sqrt{5}\) . Tính tổng phần tỬ của S

5 Tọa độ một vecto pháp tuyến của măt phẳng \(\alpha\) đi qua ba điểm M (2;0;0),N(0;-3;0),P(0;0;4) là

2
NV
3 tháng 7 2020

3.

\(x^2+4y^2=x^2+8.\frac{y^2}{2}\ge9\sqrt[9]{\frac{x^2y^{16}}{2^8}}\)

\(\Rightarrow\sqrt{x^2+4y^2}\ge\sqrt{9\sqrt[9]{\frac{x^2y^{16}}{2^8}}}=3\sqrt[9]{\frac{xy^8}{2^4}}\)

\(\Rightarrow x+\sqrt{x^2+4y^2}\ge x+3\sqrt[9]{\frac{xy^8}{2^4}}\ge4\sqrt[4]{x\sqrt[3]{\frac{xy^8}{2^4}}}=4\sqrt[12]{\frac{x^4y^8}{2^4}}=4\sqrt[3]{\frac{xy^2}{2}}\)

\(\Rightarrow\left(x+\sqrt{x^2+4y^2}\right)^3\ge\left(4\sqrt[3]{\frac{xy^2}{2}}\right)^3=32xy^2\)

\(\Rightarrow P\le\frac{4xy^2}{32xy^2}=\frac{1}{8}\)

\(P_{max}=8\) khi \(y=x\sqrt{2}\)

4.

\(y'=x^2+2\left(m+1\right)x+4\) (1)

Để hàm số nghịch biến trên 1 đoạn có độ dài bằng \(2\sqrt{5}\)

\(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left|x_2-x_1\right|=2\sqrt{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)^2-4>0\\\left(x_2-x_1\right)^2=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\\left(x_1+x_2\right)^2-4x_1x_2=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\4\left(m+1\right)^2-16=20\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)

\(\Rightarrow\sum m=-2\)

5.

Pt đoạn chắn: \(\frac{x}{2}+\frac{y}{-3}+\frac{z}{4}=1\Leftrightarrow6x-4y+3z+12=0\)

Mặt phẳng (MNP) nhận \(\left(6;-4;3\right)\) là 1 vtpt

NV
3 tháng 7 2020

1.

\(v\left(t\right)=s'\left(t\right)=-3t^2+12t+17=-3\left(t-2\right)^2+29\le29\)

\(\Rightarrow v\left(t\right)_{max}=29\) khi \(t=2\left(s\right)\)

2.

E là trung điểm AD \(\Rightarrow ABCE\) là hình vuông

Gọi O là giao điểm AC và BE, qua O kẻ đường thẳng song song SA cắt SC tại I

\(\Rightarrow\) I là tâm mặt cầu ngoại tiếp S.ABCE

\(\Rightarrow R=IC=\frac{SC}{2}\)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\) \(\Rightarrow SC=\sqrt{SA^2+AC^2}=2a\)

\(\Rightarrow R=\frac{AC}{2}=a\)

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)Câu 2: Xét hàm...
Đọc tiếp

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?

\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)

\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)

Câu 2: Xét hàm số \(f\left(x\right)=-x^4+4x^2-3.\)Khẳng định nào sau đây đúng?

A. Hàm số đồng biến trong khoảng \(\left(-\infty;\sqrt{2}\right).\)

B. Hàm số đồng biến trong khoảng \(\left(-\sqrt{2};+\infty\right).\)

C. Hàm số đồng biến trong từng khoảng \(\left(-\infty;-\sqrt{2}\right)\)và \(\left(0;\sqrt{2}\right).\)

D. Hàm số đồng biến trong từng khoảng \(\left(-\sqrt{2};0\right)\)và \(\left(\sqrt{2};+\infty\right)\)

1
22 tháng 6 2019

Lần sau em đăng trong h.vn

1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)

Đáp án B: 

2. \(f'\left(x\right)=-4x^3+8x\)

\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)

Có BBT: 

x -căn2 0 căn2 f' f 0 0 0 - + - +

Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C