K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 5 2020

6.

d nhận \(\left(2;-1;-3\right)\) là 1 vtcp

7.

Phương trình mặt phẳng (P) qua A và vuông góc d nhận \(\left(3;2;-1\right)\) là 1 vtpt có dạng:

\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x+2y-z-4=0\)

Pt tham số d: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

A' là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)

\(\Rightarrow A'\left(1;0;-1\right)\)

8.

Tọa độ H là \(H\left(0;2;0\right)\) (giữ tung độ, thay hoành độ và cao độ bằng 0 là xong)

NV
30 tháng 5 2020

4.

\(\left(1+e^x\right)x=\left(1+e\right)x\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Diện tích:

\(S=\int\limits^1_0\left[\left(1+e\right)x-\left(1+e^x\right)x\right]dx\)

\(=\int\limits^1_0e.xdx-\int\limits^1_0x.e^xdx\)

\(=\left(\frac{1}{2}e.x^2-\left(x-1\right)e^x\right)|^1_0=\frac{e}{2}-1=\frac{e-2}{2}\)

5.

Do 3 điểm A;B;C lần lượt thuộc 3 trục tọa độ nên mặt cầu đi qua 4 điểm có tâm \(I\left(\frac{1}{2};-1;2\right)\)

\(R=IA=\sqrt{\left(\frac{1}{2}\right)^2+\left(-1\right)^2+2^2}=\frac{\sqrt{21}}{2}\)

Phương trình:

\(\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=\frac{21}{4}\)

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\) là 2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6 3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz) 4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\)...
Đọc tiếp

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\)

2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6

3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz)

4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) :2x+2y-z+9=0 điểm A(1;2;-3). diểm đối xứng của a qua mặt phẳng \(\alpha\)

5 khẳng định nào sau đây là sai?

A\(\int\) \(f^,\)(x)dx=F(x)+C B \(\int\) k.f(x)dx=k.\(\int\) f(x)dx C \(\int\)f(x)dx=F(x)+C D\(\int\)[f(x)-g(x)]dx=\(\int\)f(x)dx-\(\int\)g(x)dx

6 gọi z1,z2,z3,z4 là bốn nghiệm của pt z^4-4z^3+7z^2-16z+12=0. tính z1^2+z2^2+z3^2+z4^2

7 trong khong gian oxyz, cho mặ phẳng (p):x+3y-z+9=0 và đương thẳng d có phương trình\(\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{-3}\) . tìm tọa độ giao điểm I của mp (P) va đường thẳng d

8 tính tích phân I=\(\int_{\frac{1}{e}}^e\) \(\frac{dx}{x}\)

9 trong không gian với hệ trục tọa độ oxyz, cho điểm A(1;-1-2) và đương thẳng d \(\frac{x-1}{1}=\frac{y+1}{1}=\frac{z}{2}\) . Phương trình mặt phẳng (P) qua điểm A và chứa đường thẳng d là

10 tính thể tích khối tròn xoay khi quay hình phẳng (D) :y=x^2-dx+4,y=0,x=0 qanh trục ox

11 cho F(x)=x^2 là một nguyên hàm của hàm số f(x)e^2x. tìm nguyên hàm của hàm số f phẩy(x)e^2x

12 diện tích hình phẳng giới hạn bởi các đồ thị ham số y=(e+1)x và y=(1+e^x) là

13 trong không gian với hệ tọa độ (oxyz) cho A(1;2;-3) hính chiếu vuông góc của điểm A trên trục ox là

14 trong không gian với hệ trưc tọa độ oxyz, cho mp(P):2x+y-2z-1=0 và đường thẳng d:\(\frac{x-2}{1}=\frac{y}{-2}=\frac{z+3}{3}\) . pt mp chứa d và vuông góc với(P) là

15 diện tích hình phẳng giới hạn bởi hai đường thẳng x+0,x=\(\pi\) và đô thị của hai hàm số y=cosx,y=sinx là

6
NV
12 tháng 5 2020

14.

Mặt phẳng (P) nhận \(\overrightarrow{n}=\left(2;1;-2\right)\) là 1 vtpt

Đường thẳng d nhận \(\overrightarrow{u}=\left(1;-2;3\right)\) là 1 vtcp

Điểm \(M\left(2;0;-3\right)\) thuộc d nên cũng thuộc (Q)

(Q) vuông góc (P) và chứa d nên nhận \(\left[\overrightarrow{n};\overrightarrow{u}\right]=\left(1;8;5\right)\) là 1 vtpt

Phương trình (Q):

\(1\left(x-2\right)+8y+5\left(z+3\right)=0\)

\(\Leftrightarrow x+8y+5z+13=0\)

15.

Phương trình hoành độ giao điểm:

\(sinx=cosx\Rightarrow x=\frac{\pi}{4}\)

\(S=\int\limits^{\frac{\pi}{4}}_0\left(cosx-sinx\right)dx+\int\limits^{\pi}_{\frac{\pi}{4}}\left(sinx-cosx\right)dx=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

NV
12 tháng 5 2020

10.

Coi lại đề nào bạn, pt hình phẳng (D) có vấn đề, nhìn chữ -dx+4 kia ko biết phải nghĩ sao

11.

Cũng ko dịch được đề này, đoán đại: cho \(F\left(x\right)=x^2\) là 1 nguyên hàm của \(f\left(x\right).e^{2x}\). Tìm nguyên hàm của \(f'\left(x\right).e^{2x}\)

\(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=e^{2x}f\left(x\right)-2\int f\left(x\right)e^{2x}dx=e^{2x}f\left(x\right)-2x^2+C\)

12.

Đúng là \(y=\left(e+1\right)x\)\(y=1+e^x\) chứ bạn? Hai đồ thị này cắt nhau tại 2 điểm, nhưng ko thể tìm được tọa độ của điểm thứ 2 đâu

13.

Hình chiếu của A lên Ox có tọa độ \(\left(1;0;0\right)\)

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b 2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là 3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng?? 4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là 5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với...
Đọc tiếp

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b

2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là

3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng??

4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là

5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với gia tốc a(t)=\(1+\frac{t}{3}\)

(m/s^2). tính quãng đường ô tô đi được sau 6 giay kể từ khi ô tô bắt đầu tăng tốc

6 cho số phức z thỏa /z-1/=/(1+i)z/ . Tập hợp biểu diễn số phức z là một đường tròn có tâm và bán kính lần lượt là

7 trong mặt phẳng oxy, cho các điểm A(4;0),B(1;-1).Gọi G là trọng tâm của tam giác ABC .Biết rằng G là điểm biểu diễn số phức z mệnh đề nào dưới đây đúng

A z=\(3+\frac{3}{2}i\) B z=2-i C z=2+i D z=\(3-\frac{3}{2}i\)

8 viết pt mặt cầu S có tâm I(1;-2;5) và tiếp xúc với mp P:x-2y-2z-4=0

9 trong ko gian oxyz, viết pt mặt cầu qua bốn điểm O, A(1;0;0);,B(0;-2;0) ,C(0;0;4)

10 trong ko gian oxyz, cho hai điểm A(1;2;-1) vÀ B(-3;0;-1) . mặt phẳng trung trực của đoạn thằng AB có phương trình là

11 rong ko gian oxyz, đường thẳng d\(\left\{{}\begin{matrix}x=t\\y=1-t\\z=2+t\end{matrix}\right.\) đi qua điểm nào sau đây

A F(0;1;2) B K(1;-1;1) C E(1;1;2) D H(1;2;0)

12 trong ko gian oxyz, cho đường thẳng \(\Delta\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=13-t\end{matrix}\right.\) (t\(\in\)R) . Đường thảng d đi qua A(0;1;-1) cắt và vuông góc với đường thẳng \(\Delta\) .viết phương trình của đường thẳng d

13 trong ko gian oxyz cho điểm A(0;1;-2) . Tọa độ điểm H là hình chiếu vuông góc cũa điểm A trên mp (P):-x-2y+2z-3=0 là

14 trong ko gian với hệ tọa độ oxyz, cho điểm A(2;3;-1) và đường thẳng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\) tọa độ điểm \(A^'\) (A phẩy ) là điểm đối xứng của điểm A qua đường thẳng d là

15 trong ko gian oxyz cho điểm A(4;-3;2).tỌA độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d \(\frac{x+2}{3}=\frac{y+2}{2}\frac{z}{-1}\)

5
NV
23 tháng 5 2020

14.

Pt mp (P) qua A và vuông góc d:

\(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\) \(\Rightarrow M\left(2;5;1\right)\)

A' đối xứng A qua d \(\Rightarrow\)M là trung điểm AA'

Theo công thức trung điểm \(\Rightarrow A'\left(2;7;3\right)\)

15.

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

PT (P) qua A và vuông góc d:

\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x+2y-z-4=0\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)

\(\Rightarrow H\left(1;0;-1\right)\)

NV
23 tháng 5 2020

11.

Thay tọa độ 4 điểm vào pt d chỉ có đáp án A thỏa mãn

12.

Phương trình (P) qua A và vuông góc \(\Delta\):

\(1\left(x-0\right)+1\left(y-1\right)-1\left(z+1\right)=0\Leftrightarrow x+y-z-2=0\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(1+t+2+t-\left(13-t\right)-2=0\Rightarrow t=4\) \(\Rightarrow M\left(5;6;9\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(5;5;10\right)=5\left(1;1;2\right)\)

Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=-1+2t\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=5+t\\y=6+t\\z=9+2t\end{matrix}\right.\)

13.

Pt tham số đường d qua A vuông góc (P): \(\left\{{}\begin{matrix}x=-t\\y=1-2t\\z=-2+2t\end{matrix}\right.\)

H là giao điểm (P) và d nên tọa độ thỏa mãn:

\(t-2\left(1-2t\right)+2\left(-2+2t\right)-3=0\Rightarrow t=1\)

\(\Rightarrow H\left(-1;-1;0\right)\)

1 tính D =\(\int_1^2\)( \(\frac{1}{x^2}+2x\))ds 2 biết \(\int_0^2\)f(x)dx=3. tính C=\(\int_0^2\)[4f(x)-3]dx 3 tính diện tích S của hình phẳng giới hạn bởi các đường y=e^x;y=2 và đường thảng x=1 bằng 4 một vật chuyển đông với vận tốc 10(m/s) thì tăng tốc với gia tốc được xác định bởi công thức a(t)=2t+t^2,(m/s^2) . tính quãng đường của vật đi được sau 9 giây kể từ lúc bắt đầu tăng tốc 10 cho...
Đọc tiếp

1 tính D =\(\int_1^2\)( \(\frac{1}{x^2}+2x\))ds

2 biết \(\int_0^2\)f(x)dx=3. tính C=\(\int_0^2\)[4f(x)-3]dx

3 tính diện tích S của hình phẳng giới hạn bởi các đường y=e^x;y=2 và đường thảng x=1 bằng

4 một vật chuyển đông với vận tốc 10(m/s) thì tăng tốc với gia tốc được xác định bởi công thức a(t)=2t+t^2,(m/s^2) . tính quãng đường của vật đi được sau 9 giây kể từ lúc bắt đầu tăng tốc

10 cho số phức z thỏa mãn /\(\overline{z}\) -(4+3i)/=2. Tập hợp biễu diễn sốc phức z là một đường tròn có tâm và bán kính lần lượt là

11 trong ko gian oxyz , cho mặt cầu S :x^2+(y-4)^2+(z-1)^2=25. tìm tâm I của mặt cầu (S)

12 viết pt mặt cầu S có tâm I(3;-3;1) và đi qua điểm A(5;-2;1)

13 trong ko gian oxyz , viết pt mặt cầu S tâm I(1;2;-1) và cắt mặt phẳng P:2x-y+2z-1=0 theo một đường tròn có bán kính bằng \(\sqrt{8}\) có phương trình là

14 trong ko gian oxyz, cho 2 điểm A(1;2;-1) vÀ B(-3;0;-1) . Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

15 trong ko gian oxyz, cho mặt phẳng P :2y-z+3=0 và điểm A(2;0;0). mặt phẳng (\(\alpha\)) đi qua A vuông góc với (P) cách gốc tọa độ O một khoảng bằng 4/3 và cắt tia OY ,OZ lần lượt tại các điểm B,C khác O . Phuong trình mặt phẳng (\(\alpha\)) là

16 trng ko gian oxyz , cho hai mặt phẳng P :2x+y-z-1=0 và Q:x-2y+z-5=0 . Khi đó , giao tuyến của (P) va (Q) có một veco chỉ phương là

17 trong ko gian oxyz, đường thẳng đi qua điểm A(-2;4;3) và vuông góc với mp 2x-3y+6z+19=0 có phương trình là

18 trong ko gian oxyz cho điểm A(-2;1;5) và mặt phẳng p:x+y-z+9=0 . tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

19 trong ko gian oxyz cho điểm A(4;-3;2) . tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d:\(\frac{x+2}{3}=\frac{y+2}{2}=\frac{z}{-1}\)

5
NV
22 tháng 5 2020

16.

\(\overrightarrow{n_{\left(P\right)}}=\left(2;1;-1\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(1;-2;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(-1;-3;-5\right)\)

\(\Rightarrow\) Giao tuyến 2 mp nhận \(\left(-1;-3;-5\right)\) hoặc \(\left(1;3;5\right)\) là 1 vtcp

17.

Đường thẳng nhận \(\left(2;-3;6\right)\) là 1 vtcp

Pt tham số: \(\left\{{}\begin{matrix}x=-2+2t\\y=4-3t\\z=3+6t\end{matrix}\right.\)

Pt chính tắc: \(\frac{x+2}{2}=\frac{y-4}{-3}=\frac{z-3}{6}\)

18.

Pt tham số đường thẳng d qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=-2+t\\y=1+t\\z=5-t\end{matrix}\right.\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(-2+t+1+t-5+t+9=0\Rightarrow t=-1\) \(\Rightarrow H\left(-3;0;6\right)\)

19.

Pt mặt phẳng (P) qua A và vuông góc d:

\(3\left(x-4\right)+2\left(y+3\right)-z=0\)

\(\Leftrightarrow3x+2y-z-6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t=0\Rightarrow t=\frac{5}{7}\) \(\Rightarrow H\left(\frac{1}{7};-\frac{4}{7};-\frac{5}{7}\right)\)

NV
22 tháng 5 2020

14.

\(\overrightarrow{BA}=\left(4;2;0\right)=2\left(2;1;0\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1;-1\right)\)

Mp trung trực AB vuông góc AB và qua M có pt:

\(2\left(x+1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y+1=0\)

15.

Gọi pt \(\left(Q\right)\) có dạng \(ax+by+cz+d=0\) (\(d\ne0\))

(Q) qua A nên: \(2a+d=0\) \(\Rightarrow d=-2a\)

\(\left(P\right)\perp\left(Q\right)\Leftrightarrow2b-c=0\) \(\Rightarrow c=2b\)

\(d\left(O;\left(Q\right)\right)=\frac{4}{3}\Leftrightarrow\frac{\left|d\right|}{\sqrt{a^2+b^2+c^2}}=\frac{4}{3}\Leftrightarrow9d^2=16\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow36a^2=16\left(a^2+b^2+4b^2\right)\) \(\Leftrightarrow20a^2=80b^2\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=-2b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=2;b=1;c=2;d=-4\\a=2;b=-1;c=-2;d=-4\end{matrix}\right.\) Có 2 mặt phẳng (Q) thỏa mãn: \(\left[{}\begin{matrix}2x+y+2z-4=0\\2x-y-2z-4=0\end{matrix}\right.\)

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1] 2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ 3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng 4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là 5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao...
Đọc tiếp

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1]

2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ

3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng

4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là

5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao tuyến của (P) và (Q) có một vecto chỉ phương là

A \(\overline{u}\) (1;-2;1) B \(\overline{u}\) (1;3;5) C \(\overline{u}\) (2;1-1) D \(\overline{u}\) (-1;3;-5)

6 trong ko gian oxyz cho điểm A(0;1;-2) .Tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) :-x-2y+2z-3=0 là

7 trong ko gain oxyz cho điểm A(1;0;2).Tọa độ điểm H là hình chiều vuông góc của điểm A trên đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{3}\)

8 trong ko gian oxyz , mặt phẳng nào sau đây nhận vecto \(\overline{n}\) =(1;2;3) làm vecto pháp tuyến

A 2z-4z+6=0 B x+2y-3z-1=0 C x-2y+3z+1=0 D 2x+4y+6z+1=0

9 Trong ko gian oxyz , cho ba điểm A(2;1;-1),B(-1;0;4),C(0;-2;-1) .Phương trình nào sau đây là phương trình của mặt phẳng A và vuông góc BC

A :x-2y-5z+5=0 B x-2y-5z-5=0 C x-2y-5z=0 D 2x-y+5z-5=0

10 trong không gian oxyz , cho hai điểm A(4;1;0) ,B(2;-1;2).Trong các vecto sau , một vecto chỉ phương của đường thẳng AB là

A \(\overline{U}\) (3;0;-1) B \(\overline{u}\) (1;1;-1) C \(\overline{u}\) (2;2;0) D \(\overline{u}\) (6;0;2)

11 Trong ko gian oxyz, viết pt tham số của đường thẳng đi qua hai điểm A(1;2;-3) ,B(2;-3;1)

12 Trong ko gian oxyz, cho điểm A(-2;0;3) và mp (p) -2X+Y-Z+11=0.Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

13 trong ko gian vói hệ tọa độ oxyz, cho điểm A(1;0;2).TỌA độ điểm \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}\frac{z+3}{3}\)

0
1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là 2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la 3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\) là 4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng 5 trong ko gian hệ tọa độ oxyz, cho...
Đọc tiếp

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là

2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la

3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\)

4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng

5 trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng

6 trong ko gian với tọa độ oxyz. cho 2 điểm A(-3;1;-4 va B(1;-1;2). pt mặt cầu S nhận AB làm đường kính là

7 trong ko gian vói hệ tọa độ oxyz, viết pt mặt cầu tâm I(3;2;4) và tiếp xúc với trục oy là

8 pt mặt cầu S tâm I(1;3;5) và tiếp cú với đường thẳng \(\frac{x}{1}=\frac{y+1}{-1}=\frac{z-2}{-1}\)

9 trong không gian với hệ tọa độ oxyz , cho điểm I(-1;0;0) và đường thẳng d:\(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+t\end{matrix}\right.\) pt mặt cầu S có tâm I và tiếp xúc với đường thẳng d là

10 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(1;2;2),B(3;-2-0). viết pt mặt phẳng trung trực đoạn AB

11 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(4;0;1) và B(-2;2;3). pt mặt phẳng trung trực đoạn AB là

12 trong ko gian oxyz, mặt phẳng \(\alpha\) đi qua gốc tọa độ(0;0;0) va2 co1 vecto phap tuyen n=(6;3;-2) thi co pt ?

13 trong ko gian oxyz , cho 2 điểm A(1;-2;4) B(2;1;2). viết pt mặt phẳng (P) vuông góc với đường AB tại điểm A LÀ

14 Trong ko gian với hệ tọa độ oxyz ,mp qua A(2;3;1) và B(0;1;2).pt mặt phẳng (P) đi qua A và vuông góc AB là

15 trong ko gian hệ tọa độ oxyz, ,p đi qua điểm A (2;-3;-2) và có vecto pháp tuyến \(\overline{n}\)=(2;-5;1) có pt là

16 viết pt mặt phẳng (P) qua A (1;1;1) vuông góc với hai mp \(\alpha\) :x+y-z-2=0 \(\beta\) x-y+z-1=0

17 trong ko gian với hệ tọa độ oxyz cho hai mp(p):x-y+z=0,(Q):3x+2y-12z+5=0 , viết pt mặt phẳng (R) đi qua O và vuông góc với (P),(Q)

18 trong ko gian hệ tạo độ oxyz, mp(Q) đi qua 3 điểm ko thẳng hang M(2;2;0),N(2;0;3),P(0;3;3) có pt là

19 trong ko gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) cắt 3 trục tọa M (3;0;0),N(0;-4;0) ,P(0;0;-2). pt mặt phẳng \(\alpha\)?

20 rong ko gian với hệ tọa độ oxyz , cho ba điểm A(1;0;0),B(0;2;0)C(0;0;3). HỎI MẶT MẶT PHẲNG NÀO DƯỚI ĐÂY ĐI QUA BA ĐIỂM A,B VÀ C

A (q) X/3+Y/2+Z/3=1 B (S)X+2Y+3Z=-1

C (P) X/1+Y/2+Z/3=0 D (r):X+2Y+3Z=1

7
NV
16 tháng 5 2020

19.

Phương trình mặt phẳng theo đoạn chắn:

\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)

\(\Leftrightarrow4x-3y-6z-12=0\)

20.

Phương trình mặt phẳng (ABC) theo đoạn chắn:

\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)

\(\Leftrightarrow6x+3y+2z-6=0\)

Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)

NV
16 tháng 5 2020

15.

\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)

16.

\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)

Phương trình (P):

\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)

17.

\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)

\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)

Phương trình mặt phẳng (R):

\(2x+3y+z=0\)

18.

\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)

\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)

Phương trình:

\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)

\(\Leftrightarrow9x+6y+4z-30=0\)

NV
17 tháng 5 2020

4.

(P) nhận \(\left(2;-1;-1\right)\) là 1 vtpt

Phương trình (d) qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=2+2t\\y=1-t\\z=4-t\end{matrix}\right.\)

Hình chiếu A' của A lên (P) là giao điểm d và (P) nên tọa độ thỏa mãn:

\(2\left(2+2t\right)-\left(1-t\right)-\left(4-t\right)+7=0\Rightarrow t=-1\)

\(\Rightarrow A'\left(0;2;5\right)\)

5.

Pt hoành độ giao điểm: \(lnx=0\Rightarrow x=1\)

Diện tích: \(S=\int\limits^e_1lnxdx-\int\limits^1_{\frac{1}{e}}lnxdx\)

Xét \(I=\int lnxdx\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.lnx-\int dx=xlnx-x\)

\(\Rightarrow S=\left(xlnx-x\right)|^e_1-\left(xlnx-x\right)|^1_{\frac{1}{e}}=1-\left(-1+\frac{2}{e}\right)=2-\frac{2}{e}\)

6.

Pt đường thẳng bị thiếu mẫu số đầu tiên

7.

Đề bài thiếu

NV
17 tháng 5 2020

1.

\(\left\{{}\begin{matrix}z_1+z_2=6\\z_1z_2=\left(3+2i\right)\left(3-2i\right)=13\end{matrix}\right.\)

\(\Rightarrow z_1;z_2\) là nghiệm của pt: \(z^2-6z+13=0\)

2.

\(\overrightarrow{BC}=\left(1;-2;-5\right)\)

Phương trình (P):

\(1\left(x-2\right)-2\left(y-1\right)-5\left(z+1\right)=0\)

\(\Leftrightarrow x-2y-5z-5=0\)

3.

\(I=\int\limits^0_{-1}x^2\left(x^2+2x+1\right)dx=\int\limits^0_{-1}\left(x^4+2x^3+x^2\right)dx=\left(\frac{1}{5}x^5+\frac{1}{2}x^4+\frac{1}{3}x^2\right)|^0_{-1}=\frac{1}{30}\)

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx A. P=7 B.P=-4 C.P=4 D.P=10 2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là A -tanx B -tanx+1 C tanx+1 D tanx-1 3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c? 4 Tích phân...
Đọc tiếp

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx

A. P=7 B.P=-4 C.P=4 D.P=10

2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là

A -tanx B -tanx+1 C tanx+1 D tanx-1

3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c?

4 Tích phân I=\(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\) \(\frac{dx}{sin^2x}\) bằng

A 1 B 3 C 4 D 2

5 Cho I=\(\int_2^a\) \(\frac{2x-1}{1-x}\)dx, xác định a đề I=-4-ln3

6 diện tích hình phẳng giới hạn bởi các đường cong y=x^3 và y=x^5 bằng

7 Tính thể tích V của khối tròn xoay tạo thành khi ta cho miền phẳng D giới hạn bởi các đường y=sin, trục hoành,x=0, x=\(\frac{\pi}{2}\) quay quanh trục Ox

8 Mô đun của số phức z=\(\frac{z-17i}{5-i}\) có phần thực là

9 cho số phức z thỏa (1-3i)z=8+6i. Mô đun của z bằng

10 phần thực của phức z thỏa (1+i)^2.(2-i)z=8+i+(1+2i)z la

11 cho zố phức z=-1-2i. điểm biểu diễn của số phức z là

A diểm D B diểm B c điểm C D điểm A

3
NV
8 tháng 5 2020

7.

Thể tích:

\(V=\pi\int\limits^{\frac{\pi}{2}}_0sin^2xdx=\frac{\pi}{2}\int\limits^{\frac{\pi}{2}}_0\left(1-cos2x\right)dx=\frac{\pi}{2}\left(x-\frac{1}{2}sin2x\right)|^{\frac{\pi}{2}}_0=\frac{\pi^2}{4}\)

8.

\(z=\frac{z-17i}{5-i}\Leftrightarrow\left(5-i\right)z=z-17i\)

\(\Leftrightarrow z\left(i-4\right)=17i\Rightarrow z=\frac{17i}{i-4}=1-4i\)

Rốt cuộc câu này hỏi modun hay phần thực vậy ta?

Phần thực bằng 1

Môđun \(\left|z\right|=\sqrt{17}\)

9.

\(\left(1-3i\right)z=8+6i\Rightarrow z=\frac{8+6i}{1-3i}=-1+3i\)

\(\Rightarrow\left|z\right|=\sqrt{\left(-1\right)^2+3^2}=\sqrt{10}\)

10.

\(\left(1+i\right)^2\left(2-i\right)z=8+i+\left(1+2i\right)z\)

\(\Leftrightarrow2i\left(2-i\right)z-\left(1+2i\right)z=8+i\)

\(\Leftrightarrow\left(4i+2-1-2i\right)z=8+i\)

\(\Leftrightarrow z=\frac{8+i}{2i+1}=2-3i\)

Phần thực \(a=2\)

11.

Điểm biểu diễn số phức là điểm có tọa độ \(\left(-1;-2\right)\)

NV
8 tháng 5 2020

4.

\(I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{dx}{sin^2x}=-cotx|^{\frac{\pi}{2}}_{\frac{\pi}{4}}=1\)

5.

\(I=\int\limits^a_2\frac{2x-1}{1-x}dx=\int\limits^a_2\left(-2-\frac{1}{x-1}\right)dx=\left(-2x-ln\left|x-1\right|\right)|^a_2=-2a-ln\left|a-1\right|+4\)

\(\Rightarrow-2a+4-ln\left|a-1\right|=-4-ln3\Rightarrow a=4\)

6.

Phương trình hoành độ giao điểm:

\(x^3=x^5\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Diện tích hình phẳng:

\(S=\int\limits^0_{-1}\left(x^5-x^3\right)dx+\int\limits^1_0\left(x^3-x^5\right)dx=\frac{1}{6}\)

1 tìm một nguyên hàm f(x) của hàm số f(x)=1+3sin3x biết f(\(\frac{\pi}{6}\))=0 2Biết f\(x^3\) ln2xdx =x^4(Aln2+B)+C. Gía trị của 5A+4B là 3Tính I=\(\int_0^{\frac{\pi}{4}}\) tan^2xdx 4 Tính L=\(\int_0^{\pi}\) xsinxdx 5 Khẳng định nào sau đây đúng về kết quả \(\int_1^ex^3lnxdx=\frac{3e^a+1}{b}\) A.a.b=64 B. a.b=46 C . a-b=12 D. a-b=4 6 tính diện tích hình phẳng dc giới hạn bởi đồ thị hàm số y=x^2-4=x^2-2x và hai...
Đọc tiếp

1 tìm một nguyên hàm f(x) của hàm số f(x)=1+3sin3x biết f(\(\frac{\pi}{6}\))=0

2Biết f\(x^3\) ln2xdx =x^4(Aln2+B)+C. Gía trị của 5A+4B là

3Tính I=\(\int_0^{\frac{\pi}{4}}\) tan^2xdx

4 Tính L=\(\int_0^{\pi}\) xsinxdx

5 Khẳng định nào sau đây đúng về kết quả \(\int_1^ex^3lnxdx=\frac{3e^a+1}{b}\)

A.a.b=64 B. a.b=46 C . a-b=12 D. a-b=4

6 tính diện tích hình phẳng dc giới hạn bởi đồ thị hàm số y=x^2-4=x^2-2x và hai đường thẳng x=-3,x=-2

7Tính diện tích hình phẳng dc giới hạn bởi các duong92/x^2-4x+3/ và y =x+3

8the tích vậ tròn xoay khi quay miền(D) giới hạn bởi (d) :y=x,(P):x^2-x khi quay qanh trục Ox là

9 một vật chuyển động dần đều với vận tốc v(t)=160-10t(m/s). Tính quảng đường s mà vật di chuyển trong khoảng thời gian từ điểm t=0(s) đến thời điểm vật dừng lại

10 cho số phức z thỏa mãn \(\frac{z}{1-2i}+\overline{z}=2.tìm\) phần thực a của số phức w=z^2-z là

11 trong mặt phẳng oxy tìm tập hợp điểm biểu diễn các số phức z thỏa mãn /z-i/=/(1+i).z/ là đường tròn có phuong trình

4
NV
10 tháng 5 2020

9.

Vật dừng lại khi \(v=0\Leftrightarrow160-10t=0\Rightarrow t=16\)

\(s=\int\limits^{t_2}_{t_1}v\left(t\right)dt=\int\limits^{16}_0\left(160-10t\right)dt=\left(160t-5t^2\right)|^{16}_0=1280\left(m\right)\)

10.

Đặt \(z=x+yi\)

\(\frac{x+yi}{1-2i}+x-yi=2\Leftrightarrow\left(1+2i\right)\left(x+yi\right)+5x-5yi=10\)

\(\Leftrightarrow6x-2y+\left(2x-4y\right)i=10\)

\(\Rightarrow\left\{{}\begin{matrix}6x-2y=10\\2x-4y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow z=2+i\)

\(\Rightarrow w=\left(2+i\right)^2-\left(2+i\right)=1+3i\)

Phần thực bằng 1

11.

Đặt \(z=x+yi\)

\(\left|x+\left(y-1\right)i\right|=\left|\left(1+i\right)\left(x+yi\right)\right|\)

\(\Leftrightarrow\left|x+\left(y-1\right)i\right|=\left|x-y+\left(x+y\right)i\right|\)

\(\Leftrightarrow x^2+\left(y-1\right)^2=\left(x-y\right)^2+\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2y-1=0\)

Hoặc dạng chính tắc:

\(x^2+\left(y+1\right)^2=2\)

NV
10 tháng 5 2020

6.

Hổng hiểu đề bài?

Là diện tích hình phẳng giới hạn bởi các đường \(y=x^2-4;y=x^2-2x;x=-3;x=-2\) đúng ko?

Làm theo đề này nhé

Hoành độ giao điểm: \(x^2-4=x^2-2x\Leftrightarrow x=2\notin\left[-3;-2\right]\)

\(x^2-4=0\Leftrightarrow x=\pm2\)

\(x^2-2x=0\Rightarrow x=\left\{0;2\right\}\notin\left[-3;-2\right]\)

Diện tích:

\(S=\int\limits^{-2}_{-3}\left(x^2-2x-\left(x^2-4\right)\right)dx=\int\limits^{-2}_{-3}\left(4-2x\right)dx=\left(4x-x^2\right)|^{-2}_{-3}=9\)

7.

Đề này thì ko dịch nổi

8.

Phương trình hoành độ giao điểm:

\(x^2-x=x\Leftrightarrow x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Thể tích:

\(V=\pi\int\limits^2_0\left[x^2-\left(x^2-x\right)^2\right]dx=\pi\int\limits^2_0\left(-x^4+2x^3\right)dx\)

\(=\pi\left(-\frac{1}{5}x^5+\frac{1}{2}x^4\right)|^2_0=\frac{8\pi}{5}\)

1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng 2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng 3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e 4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\) 5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với...
Đọc tiếp

1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng

2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng

3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e

4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\)

5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với i là đơn vị ảo . Gía trị của 6x-y bằng

6 họ tất cả nguyên hàm của hàm số f(x)=\(\frac{x+2}{x+1}\) trên khoảng (-1,\(+\infty\)) là

7 trong ko gian Oxyz, cho hai điểm M (-3;1;2) và N (1;3;-3) , mat95 phẳng vuông góc với MN tại điểm M có pt là

8 cho hình nón có chiều cao bằng \(a\sqrt{6}\) và thiết diện đi qua trục của khối nón đó là tam giác đều, thể tích khối nón bằng

9 cho số phức z thỏa mãn 2(\(\overline{z}\) +i)+(2+i)z=6+5i. Mô đun của số phức z bằng

10 trong ko gian Oxyz, cho \(\overline{a}\left(2;3;-1\right),\overline{b}\left(-1;0;2\right)\) . Tính \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)\)

11 họ tất cả các nguyên hàm của hàm số f(x) =x^4 -3e^x là

12 cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Diện tích mặt cầu ngoại tiếp hình chóp đã cho bằng

13 cho hàm số f(x) liên tục trên R , biết e^X là một nguyên hàm của hàm số \(f\left(x\right)e^{-x}\) . Họ tất cả các nguyên hàm của hàm số x.\(f^,\left(x\right)là\)

14 biết\(\int\frac{dx}{e^x+e^{-x}+2}\) =\(a\left(e^x+1\right)^b+C\) với a,b,c \(\in Z\) . Tính S=2a-3b

15 họ tất cả các nguyên hàm của ham số y =6xlnx trên khoảng \(\left(0;+\infty\right)\)

16 cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ bởi một mặt phẳng song song với trục và cách trục một khoảng 2a, thiết diện thu dc là một hình vuông. Thể tích khối trụ dc giới hạn bởi hình trụ đã cho bằng

17 trong ko gian oxyz, cho điểm M (1;-3;2) và mặt phang73 (P) :x-3y-2z+5=0 , biết mặt phẳng (Q) :ax-2y+bz-7=0 đi qua M và vuông góc (P) , giá trị của 3a+2b bằng

18 cho hình nón có bán kính bằng \(a\sqrt{3}\) và chiêu cao a. Một mp thay đổi qa đỉnh nón và cắt hình nón theo thiết diện là tam giác cân. Tính diện tích lớn nhất tam giác cân đó

11
AH
Akai Haruma
Giáo viên
20 tháng 7 2020

18.

Mặt phẳng đi qua đỉnh hình nón cắt hình nón theo thiết diện tam giác cân $ABC$ với $A$ là đỉnh hình nón.

Kẻ $OH\perp BC$ tại $H$.

Chiều cao của tam giác $ABC$ là:

$AH=\sqrt{AO^2+OH^2}=\sqrt{a^2+OH^2}$

Lại có:

$BH=\sqrt{OB^2-OH^2}=\sqrt{(a\sqrt{3})^2-OH^2}=\sqrt{3a^2-OH^2}$

$\Rightarrow BC=2BH=2\sqrt{3a^2-OH^2}$

Diện tích tam giác $ABC$:

$S=\frac{AH.BC}{2}=\sqrt{a^2+OH^2}.\sqrt{3a^2-OH^2}=\sqrt{(a^2+OH^2)(3a^2-OH^2)}$

$\leq \frac{a^2+OH^2+3a^2-OH^2}{2}=2a^2$ theo BĐT AM-GM

Vậy $S_{\max}=2a^2$

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

17.

MP $(Q)$ đi qua $M$ nên:

$ax_M-2y_M+bz_M-7=0\Leftrightarrow a+6+2b-7=0$

$\Leftrightarrow a+2b=1(1)$

Mặt khác $(P)\perp (Q)$ nên VTPT của $(P)$ vuông góc với VTPT của $(Q)$

$\Leftrightarrow (1,-3,-2)\perp (a,-2,b)$

$\Leftrightarrow a+6-2b=0$

$\Leftrightarrow a-2b=-6(2)$

Từ $(1);(2)\Rightarrow a=\frac{-5}{2}; b=\frac{7}{4}$

$\Rightarrow 3a+2b=-4$