Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi Uc1=40V thì có Um= \(\sqrt{60^2+\left(120-40\right)^2}\)=100 V và UL=2Ur là không đổi
Khi U2=80V Thì Um=1002= Ur2 +(2Ur-80)2 Giải ra đk Ur= 73,76V
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
Ta có:
\(U_C=56V\)
\(U_d^2=U_R^2+U_L^2=160^2\) (1)
\(U^2=U_R^2+(U_L-U_C)^2=120^2\)
\(\Rightarrow U_R^2+U_L^2-2U_LU_C+U_C^2=120^2\)
\(\Rightarrow 160^2-2U_L.56+56^2=120^2\)
\(\Rightarrow U_L=128V\)
Thế vào (1) suy ra \(U_R=96V\)
Có \(Z_L=\omega.L=10\pi(\Omega)\)
Có \( \dfrac{U_L}{U_R}=\dfrac{Z_L}{R}\) \(\Rightarrow \dfrac{128}{96}=\dfrac{10\pi}{R}\) \(\Rightarrow R= 7,5\pi(\Omega)\)
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V