Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi A là biến cố: “ 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt”
Khi đó A ¯ là biến cố :”3 sản phẩm lấy ra không có sản phẩm nào tốt”
Ta có:
Ω = C 10 3 ; Ω A = C 10 3 ⇒ P A ¯ = C 10 3 C 30 3 = 6 203
Suy ra
P A = 1 − P A ¯ = 197 203 .
Đáp án A
Lô 1 : Xác suất lấy sản phẩm tốt : 0,6
Xác suất lấy sản phẩm không tốt : 0,4
Lô 2 : Xác suất lấy sản phẩm tốt :0,7
Xác suất lấy sản phẩm không tốt : 0,3
⇒ xác suất để trong hai sản phẩm lấy ra có ít nhất một sản phẩm có chất lượng tốt :
p = 0 , 6.0 , 7 + 0 , 6.0 , 3 + 0 , 7.0 , 4 = 0 , 88
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
ĐK: a khác 1/2
\(P=\frac{1}{2a-1}\sqrt{25a^4\left(1-4a+4a^2\right)}\)
\(=\frac{1}{2a-1}\sqrt{\left(5a^2\right)^2\left(2a-1\right)^2}=\frac{5a^2}{2a-1}\left|2a-1\right|\)
Với 2a-1>0 <=> a>1/2
\(P=5a^2\)
Với 2a-a<0 <=> a<1/2
\(P=-5a^2\)
P = 7 + 72 + 73 + ... + 72016
=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)
=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)
=> P = 7 . 400 + ... + 72013 . 400
=> P = (7 + ... + 72013) . 400
=> P = (7 + ... + 72013) . 202 (đpcm)
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Đáp án C
Phương pháp giải:
Chia trường hợp của biến cố, áp dụng các quy tắc đếm cơ bản tìm số phần tử của biến cố
Lời giải:
Lấy 6 sản phẩm từ 20 sản phẩm lô hàng có cách
Gọi X là biến cố 6 sản phẩm lấy ra có không quá 1 phế phẩm. Khi đó, ta xét các trường hợp sau:
TH1. 6 sản phẩm lấy ra 0 có phế phẩm nào => có cách
TH2. 6 sản phẩm lấy ra có duy nhất 1 phế phẩm => có cách
Suy ra số kết quả thuận lợi cho biến cố X là
Vậy xác suất cần tính là