K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Lực đàn hồi của lò xo được xác định bằng biểu thức F   =   - k ( ∆ l 0 + x )   với ∆ l 0  là độ biến dạng của lò xo tại vị trí cân bằng và x là li độ của vật.

Từ (1) và (2) ta tìm được

∆ l 0 = 0 , 25 A

+ Tỉ số giữa thời gian lò xo giãn và nén trong một chu kì là 

Đáp án B

2 tháng 7 2017

20 tháng 3 2018

Giải thích: Đáp án B

Phương pháp: Dùng đường tròn lượng giác và công thức tính lực đàn hồi của lò xo

Cách giải:

Từ đồ thị ta thấy:

Lực đàn hồi tại thời điểm ban đầu: F = F1 = - k(Δl0 + x)

Lực đàn hồi tại vị trí biên dương:  F = F2 = - k(Δl0 + A)

Lực đàn hồi tại vị trí biên âm: F = F3 = - k(Δl0 – A)

Gọi Δt là thời gian từ t = 0 đến t = 2/15s

Ta có:

Theo đề bài: F1 + 3F2 + 6 F3 = 0 <=> k (Dl0 + x ) + 3k (Dl0 + A ) + 6k (Dl0 – A ) = 0 => Dl0  = 0, 25A

=>Thời gian lò xo nén là:  

Tỉ số thời gian giãn và nén trong một chu kì: Chọn B

27 tháng 8 2017

Giải thích: Đáp án A

Từ đồ thị ta thấy:

Lực đàn hồi tại thời điểm ban đầu:

Lực đàn hồi tại vị trí biên dương:  

Lực đàn hồi tại vị trí biên âm: 

Gọi  là thời gian từ t = 0 đến t = 2/15s

Ta có:

Theo đề bài: 

=> Thời gian lò xo nén là 0,446T

=> Thời gian lò xo giãn là 0,554T

Tỉ số thời gian lò xo giãn và lò xo nén trong một chu kì là 1,24

Chọn A

21 tháng 6 2016

\(\omega=2\pi f = 9\pi (rad/s)\)

Biên độ \(A=(56-40)/2=8(cm)\)

Gốc thời gian lúc lò xo ngắn nhất --> biên độ (-A) -->\(\varphi=-\pi (rad)\)

Vậy: \(x=8\cos(9\pi t-\pi)(cm)\)

Chọn D.

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

15 tháng 7 2016

Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.

Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)

Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)

\(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)

+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)

\(\Rightarrow A = 5cm\)

+ Ban đầu ta có \(x_0=3cm\)\(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)

\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)

\(\Rightarrow \varphi \approx0,3\pi(rad)\)

Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)

16 tháng 8 2016

\(\Delta l=\frac{g}{\omega^2}=0,25m\)

\(t=0\Rightarrow x=5\sqrt{3}cm\Rightarrow l=l_0+\Delta l+x=158,66cm\)

Vậy không phương án đúng

16 tháng 8 2016

bạn ơi sao mình lại tính ra x=10

 

15 tháng 8 2016

\(\Delta l=5cm\)

Vị trí có lực đẩy đàn hồi lần thứ nhất chính là vị trí lò xo bắt đầu bị nén. Tức là qua vị trí -\(x=-\Delta l\).

M -10 10 N -5 ^

Vị trí ban đầu t = 0 tại M ứng với góc (-90 độ). 

Vị trí lực đầy đàn hồi lần thứ nhất tại N x = -5 cm.

=> \(\varphi=\pi+\frac{\pi}{6}=\frac{7\pi}{6}\Rightarrow t=\frac{\varphi}{\omega}=\frac{7\pi}{6.10\pi}=\frac{7}{60}s.\)

 

20 tháng 6 2019

sai rồi bạn ơi, lực đẩy max là lúc vật ở vị trí -A nhé, denta phi sẽ là 3π/2, và t sẽ là 3/20s