\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2+\left(\frac{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi

17 tháng 10 2017

\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2=\left(\frac{x}{5}\right)^2+\left(\frac{x}{6}\right)^2+\left(\frac{x}{7}\right)^2\)

\(\frac{x^2}{2^2}+\frac{x^2}{3^2}+\frac{x^2}{4^2}=\frac{x^2}{5^2}+\frac{x^2}{6^2}+\frac{x^2}{7^2}\)

\(\frac{x^2}{2^2}+\frac{x^2}{3^2}+\frac{x^2}{4^2}-\frac{x^2}{5^2}-\frac{x^2}{6^2}-\frac{x^2}{7^2}=0\)

\(x^2.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}-\frac{1}{5^2}-\frac{1}{6^2}-\frac{1}{7^2}\right)=0\)

vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}-\frac{1}{5^2}-\frac{1}{6^2}-\frac{1}{7^2}\ne0\)nên \(x^2=0\)

\(\Rightarrow x=0\)

17 tháng 10 2017

x^2(1/4+1/9+1/16-1/25-1/36/1/49)=0
mà (1/2+1/9=1/16-1/25-1/36-1/49)>0
=>x=0

11 tháng 7 2016

a)  \(\Leftrightarrow\frac{x+7}{2003}+1+\frac{x+4}{2006}+1-\frac{x-1}{2011}-1-\frac{x-5}{2015}-1=0\)

     \(\Leftrightarrow\frac{x+2010}{2003}+\frac{x+2010}{2006}-\frac{x+2010}{2011}-\frac{x+2010}{2015}=0\)

     \(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2003}+\frac{1}{2006}-\frac{1}{2011}-\frac{1}{2015}\right)=0\)

     \(\Leftrightarrow x+2010=0\) ( vì 1/2003  +  1/2006  --  1/2011  -- 1/2015   \(\ne\)0)

    \(\Leftrightarrow x=-2010\)

câu b làm tương tự (có gì không hiểu hỏi mk nha) >v<

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

17 tháng 11 2018

Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.

a) Số thừa số âm ở VT chẵn.

Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\)  nên

\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)

26 tháng 10 2016

a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)

        \(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)

        \(\frac{2}{5}-x=-3\)

                   \(x=\frac{2}{5}-\left(-3\right)\)

                   \(x=\frac{2}{5}+3\)

                   \(x=\frac{3}{5}-\frac{15}{5}\)

                   \(x=-\frac{12}{5}\)

Vay \(x=-\frac{12}{5}\) 

    

  

26 tháng 10 2016

b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)

        \(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)

        \(-3+\frac{3}{x}=\frac{-25}{12}\)

                     \(\frac{3}{x}=\frac{-25}{12}+3\)

                      \(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)

                      \(\frac{3}{x}=\frac{5}{6}\)

                      \(\frac{18}{6x}=\frac{5x}{6x}\)

Đèn dây , bạn tự làm tiếp nhé , de rồi chứ