Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(3x-y)\(^2\)\(\ge\) 0 \(\forall\) x
|x+y|\(\ge\) 0 \(\forall\)i x,y
=>(3x-y)\(^2\)+|x+y|\(\ge\)0 \(\forall\) x,y
=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y
Vậy GTNN của biểu thức B là -3
Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0
Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0
Với |x+y|=0=>x+y=0=>x=x=0
Vậy biểu thức B đạt GTNN là -3 khi x=y=0
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
\(\left(-\frac{1}{3}\right)^{3+n}:\left(-\frac{1}{3}\right)^n=\left(-\frac{1}{3}\right)^{3+n-n}=\left(-\frac{1}{3}\right)^3=-\frac{1}{27}\)
2. n = {2;3;4}
3.2x + 2x + 3 = 288
=> 2x . 2 = 288 - 3 = 285
=> 2x = 285 : 2 = 285/2.
Mà 2x không thể bằng phân số nên x không tồn tại nhé
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^x-\left(x-3\right)^{10}\right]=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-3=0\\\left(x-3\right)^x-\left(x-3\right)^{10}=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\\left(x-3\right)^x=\left(x-3\right)^{10}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=10\end{array}\right.\)
Vậy \(x\in\left\{3;10\right\}\)
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^x-\left(x-3\right)^9\right]=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-3=0\\\left(x-3\right)^x-\left(x-3\right)^9=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\\left(x-3\right)^x=\left(x-3\right)^9\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=9\end{array}\right.\)
Vậy \(x\in\left\{3;9\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)
a) \(\left(2x-3\right)\left(\frac{3}{4}x+1\right)=0\)
<=>\(\hept{\begin{cases}2x-3=0\\\frac{3}{4}x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=3\\\frac{3}{4}x=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{4}\end{cases}}}\)
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Leftrightarrow\hept{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}}\)
Ta có:(2x\(^2\)+3) luôn lớn hơn hoặc bằng 0 với mọi x
=>(2x\(^2\)+3)\(^2\) -7 luôn lớn hơn hoặc bằng -7 với mọi x
Vậy GTNN của biểu thức C là 7
Dấu "=" xảy ra khi (2x\(^2\)+3)\(^2\)=0
=>2x\(^2\)+3 =0
2x\(^2\) =-3
x\(^2\) =\(\frac{-3}{2}\)
x =\(\sqrt{\left(\frac{-3}{2}\right)^2}\)
Vậy GTNN của biểu thức C là -7 khi x=\(\sqrt{\left(\frac{-3}{2}\right)^2}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-x=3\sqrt{3}\\\dfrac{2}{3}-x=-3\sqrt{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2-9\sqrt{3}}{3}\\x=\dfrac{2+9\sqrt{3}}{3}\end{matrix}\right.\)
cảm ơn nhé