Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(3x-y)\(^2\)\(\ge\) 0 \(\forall\) x
|x+y|\(\ge\) 0 \(\forall\)i x,y
=>(3x-y)\(^2\)+|x+y|\(\ge\)0 \(\forall\) x,y
=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y
Vậy GTNN của biểu thức B là -3
Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0
Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0
Với |x+y|=0=>x+y=0=>x=x=0
Vậy biểu thức B đạt GTNN là -3 khi x=y=0
ukm, đúng rùi mình viết thiếu
Tìm GTLN hoặc GTNN :
B=(3x-y)^2+|x+y|-3
1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)
\(\left|x+\frac{11}{2}\right|>5,5\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)
vay ....
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x-3\right)\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-3x=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)
Xét \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Xét \(\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì xét 2 trị biểu thức , một cái có 2 giá trị (0 or 3) , một cái (-1 or 3)
Nên ta lấy cái chung
=> x = 3
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-x=3\sqrt{3}\\\dfrac{2}{3}-x=-3\sqrt{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2-9\sqrt{3}}{3}\\x=\dfrac{2+9\sqrt{3}}{3}\end{matrix}\right.\)
Ta có:(2x\(^2\)+3) luôn lớn hơn hoặc bằng 0 với mọi x
=>(2x\(^2\)+3)\(^2\) -7 luôn lớn hơn hoặc bằng -7 với mọi x
Vậy GTNN của biểu thức C là 7
Dấu "=" xảy ra khi (2x\(^2\)+3)\(^2\)=0
=>2x\(^2\)+3 =0
2x\(^2\) =-3
x\(^2\) =\(\frac{-3}{2}\)
x =\(\sqrt{\left(\frac{-3}{2}\right)^2}\)
Vậy GTNN của biểu thức C là -7 khi x=\(\sqrt{\left(\frac{-3}{2}\right)^2}\)
GTNN : ta co : (2x2+3)2 luôn lớn hơn hoặc bằng 0
=> để C đạt giá trị nhỏ nhất thì (2x2+3)2 =0
=> C =0-7=-7